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Into the distance, a ribbon of black
Stretched to the point of no turning back
A flight of fancy on a windswept field
Standing alone my senses reeled
A fatal attraction is holding me fast,
How can I escape this irresistible grasp?

Can’t keep my eyes from the circling skies
Tongue-tied and twisted, just an earth-bound misfit, I

Ice is forming on the tips of my wings
Unheeded warnings, I thought, I thought of everything
No navigator to find my way home
Unladened, empty and turned to stone
A soul in tension — that’s learning to fly
Condition grounded but determined to try

Can’t keep my eyes from the circling skies
Tongue-tied and twisted just an earth-bound misfit, I

Above the planet on a wing and a prayer,
My grubby halo, a vapour trail in the empty air,
Across the clouds I see my shadow fly
Out of the corner of my watering eye
A dream unthreatened by the morning light
Could blow this soul right through the roof of the night

There’s no sensation to compare with this
Suspended animation, a state of bliss

Can’t keep my mind from the circling skies
Tongue-tied and twisted just an earth-bound misfit, I

— Pink Floyd, “Learning to Fly”



Preface

I have had a long-standing interest in how the human brain works. When
at the end of my master’s education the option arose to conduct research

on brain-computer interfaces (BCIs), I had no choice but to pursue. The
very intense past four years that followed culminated in this little book.
This period was marked by great freedom to explore and follow intellectual
curiosity, but also required perseverance, reflection on my strengths and
weaknesses — and hard work. Looking back, I think of this period as a very
valuable, and defining period of my life.

When I started four years ago, the BCI research was just starting at our
Human Media Interaction (HMI) group, funded by the national BrainGain
project. Through collaboration with Peter Desain’s Cognitive Artificial In-
telligence (CAI) group in Nijmegen, we quickly found our way in the field
of BCIs. Over time, we developed our own best practises, and performed
BCI research from the human-computer interaction (HCI) perspective. Si-
multaneously, I developed open source packages for signal processing and
machine learning that powered many of our BCI demos.

Lots of people contributed to this great experience. First of all, I would
like to thank the people from the HMI group. Specifically, my promotor An-
ton Nijholt for providing a place within the HMI group and allowing me to
deviate from the sharp boundaries of the project assignment, and my daily
supervisor Mannes Poel, who was always available for work-related reflec-
tions and kept an eye not only on the progress of my work, but was also
interested in my personal well-being. During my travel to the university
I often spoke with Dirk Heylen, who often stimulated me to reflect more
deeply on my statements. I would also like to thank the secretaries Char-
lotte and Alice for their support, and thank Lynn for proofreading all my
papers. Ronald shared my view on machine learning, and provided a listen-
ing ear for my doubts regarding the field. Dennis provided the occasional
odd thought, folk music and general serendipity, and pushed me to think of
the wider implications of my work.
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I would like to thank the BrainMedia subgroup for the pleasant discus-
sions and reflections on BCIs, and the experiences we shared. In particular, I
would like to thank my roommate Christian with whom I shared the doubts
and worries of obtaining a PhD, but also the successes, and Danny for our
shared development of a vision on practical BCIs, her optimistic view, and
our collaborations.

This work would not be the same without my weekly visits to the CAI
group. Talking to Jason taught me that a simple mathematical proof can
often save literally months of empirical research, and I learned a great vari-
ety of elegant (machine learning) tricks. When visiting, Rutger always had
time for a creative brainstorm, and was as motivated as I am to improve the
practise, and not only the theory of BCIs. I greatly enjoyed my collaboration
with this group, and I would like to thank Peter Desain for creating many
opportunities for me.

I know that the last years have been hard for the people around me. I
would like to thank my friends and family for their support and acceptance
of my sometimes lacking focus. My special thanks and admiration go to
my wife Sanne and my daughter Lauren for enabling me to perform this
research.



Contents

Preface vii

Contents ix

Samenvatting xi

Summary xv

1 Introduction 1
1.1 BCIs for healthy users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Key challenges for BCI adoption . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Influence of loss of control 7
2.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Key press classification from EEG . . . . . . . . . . . . . . . . 11
2.2.4 Loss of control analysis . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Performance measure . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.6 Confounding factors . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.7 Statistical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Self assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Confounding behavioural differences . . . . . . . . . . . . . 17
2.3.4 Impact of loss of control on the BCI . . . . . . . . . . . . . . . 20

2.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . 24

ix



x CONTENTS

3 Cross-subject generalization 27
3.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 CSP classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Direct covariance classification . . . . . . . . . . . . . . . . . . 31
3.2.3 Covariance classification with a second order-baseline 31
3.2.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.5 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Subject-dependent classification . . . . . . . . . . . . . . . . 34
3.3.2 Subject-independent classification . . . . . . . . . . . . . . . 36

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 An SVM for structured errors 41
4.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 The dependent-samples SVM . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Artificial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 BCI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusions 55
5.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 The road ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 A different kind of BCI research . . . . . . . . . . . . . . . . . . 58
5.3.2 Better feature spaces . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.3 Towards uncued BCI classification . . . . . . . . . . . . . . . 60
5.3.4 The iid assumption . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Bibliography 63

Notation 73

Publication list 75

SIKS Dissertation Series 79



Samenvatting

EEN brein-computer interface (BCI) maakt directe communicatie tussen
het brein en computers mogelijk, en omzeilt daarmee de traditionele

route via de zenuwen en spieren. BCI’s worden meestal ontworpen voor
patiënten, die op geen enkele andere manier kunnen communiceren (door
bijvoorbeeld verlamming). Het BCI-onderzoek van onze groep richt zich
echter op gezonde gebruikers, specifiek op speltoepassingen. Deze onge-
bruikelijke focus leid tot andere eisen die we aan een BCI stellen.

Voor een algemene acceptatie van BCI-technologie moeten twee kern-
problemen worden opgelost: 1) de investering die gedaan moet worden om
een BCI te kunnen gebruiken moet klein zijn voor de gebruiker (zowel fi-
nanciële investeringen, als investering van tijd), en 2) op de BCI moet ver-
trouwd kunnen worden; de BCI moet dus voorspelbaar reageren, met een
constante nauwkeurigheid. Daarnaast moet een BCI natuurlijk zo worden
toegepast dat het een meerwaarde biedt omdat de huidige generatie BCI’s
zich nog niet kan meten met de snelheid en betrouwbaarheid van invoer-
apparaten voor gezonde gebruikers.

Het eerste kernprobleem sluit de mogelijkheid uit dat hersensignalen
worden gemeten met dure medische apparatuur. Relatief goedkope consu-
mentenhardware is gelukkig al commercieel verkrijgbaar, wat het probleem
van financiële investeringen grotendeels oplost. Wat overblijft is het deel-
probleem dat (gezonde) gebruikers waarschijnlijk niet bereid zijn om weken
of zelfs maanden te investeren — hetgeen gangbaar is voor BCI’s gericht op
patiënten — om de vaardigheid te leren die ze in staat stelt vrijwillig hun
hersensignalen te sturen.

BCI’s gebaseerd op machine learning reduceren het probleem van de te
investeren tijd van maanden naar minuten. Dit doen ze door de persoons-
afhankelijke patronen in spontane hersenactiviteit te herkennen. Maar zelfs
met deze geavanceerde BCI’s is een veeleisende en foutgevoelige kalibratie-
sessie, waarin de gebruiker geforceerd mentale taken moet uitvoeren, stee-
vast nodig voor de BCI gebruik kan worden. Deze kalibratie is nodig omdat
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de hersensignalen variëren van sessie tot sessie. De toepasbaarheid en de
laagdrempeligheid van een BCI zouden sterk worden vergroot als deze her-
haaldelijke kalibratiesessie vermeden kan worden.

Het tweede kernprobleem is gerelateerd aan het fundamentele probleem
dat binnen het BCI-veld bekend staat als niet-stationaire signalen. De inhe-
rent variabele natuur van spontane hersenactiviteit leidt tot variaties in de
signaaleigenschappen die de BCI gebruikt om hersenactiviteit te herken-
nen. Deze variabiliteit schendt de basisaanname van de machine learning
methodes die gebruikt worden om een herkenner voor de BCI te trainen, en
leidt tot grote fluctuaties in de nauwkeurigheid van de herkenning van de
hersenactiviteit. Deze fluctuaties maken de huidige generatie BCI’s onbe-
trouwbaar.

Beide kernproblemen zijn gerelateerd; zowel de inter-sessie variabiliteit
als de onbetrouwbaarheid stammen af van niet volledig begrepen variaties
van de hersensignalen over tijd, sessies en personen. In dit proefschrift on-
derzoeken we de aard van deze variaties, en ontwikkelen we twee nieuwe,
complementaire technieken om deze kernproblemen op te lossen.

Om het probleem van niet-stationaire hersensignalen te bevestigen, la-
ten we eerst zien dat een BCI, gebaseerd op veelgebruikte signaaleigen-
schappen, gevoelig is voor veranderingen in de gemoedstoestand van de
gebruiker. Vervolgens presenteren we een methode gericht op het verwij-
deren van deze signaalveranderingen. Uitgaande van het inzicht dat een
grote groep BCI’s gebaseerd is op relatieve veranderingen in spectrale ener-
gie, maar de absolute energie gebruikt, ontwikkelen we een methode die
een tweede-orde referentiepunt (SOB, second-order baseline) gebruikt om
de relatieve veranderingen in het vuren van neuronen te isoleren. Voor
zover wij weten is dit de eerste BCI die, zonder kalibratiesessie, spontane
hersenactiviteit kan herkennen bij nieuwe gebruikers, zonder dat dit tot
prestatieverlies leidt. Met deze SOB-methode hebben we het probleem van
langzaam veranderende signaaldistributies omzeild. Maar nog steeds gaat
de aanname, dat voorbeelden waarop de herkenner gebaseerd wordt on-
afhankelijk zijn van elkaar, niet op; hersenactiviteit lijkt op hersenactiviteit
die kort daarvoor is waargenomen. In het bijzonder tijdens het trainen van
een herkenner is het schenden van deze aanname problematisch, omdat de
hoeveelheid informatie die de voorbeelden bevatten wordt overschat. Dit
leidt tot overfitting; het model werkt alleen goed tijdens de kalibratiesessie.
Daarom hebben we een generalisatie van de bekende support vector ma-
chine (SVM) herkenner afgeleid, die de chronologische structuur van her-
kenfouten mee kan nemen in de optimalisatie. Zowel op kunstmatige als
echte BCI-data wordt overfitting verminderd, en leidt dit tot een verhoogde
informatiedoorvoer.
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Met de SOB-methode hebben we het eerste kernprobleem (investering
van tijd) opgelost voor BCI’s gebaseerd op het inbeelden van bewegingen.
Het is waarschijnlijk dat deze aanpak ook voor andere mentale taken de ka-
libratiesessie overbodig maakt. Het tweede kernprobleem is deels opgelost
met de generalisatie van de dependent-samples support vector machine
(dSVM): de methode demonstreert dat het mogelijk is om de robuustheid te
verbeteren door het modelleren van de structuur van de herkenfouten. Ech-
ter, het niet aannemen van onafhankelijke observaties roept nieuwe vragen
op met betrekking tot de interpretatie van prestatiematen die gebruikt wor-
den om BCI’s te evalueren. Met de twee methodes gepresenteerd in deze
thesis, hebben we een weg gebaand voor een nieuwe generatie BCI’s —
BCI’s die betrouwbaar werken, zonder dat een kalibratiesessie nodig is.
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Summary

A BCI enables direct communication from the brain to devices, bypass-
ing the traditional pathway of peripheral nerves and muscles. Usually,

BCIs are targeted at paralysed patients who have no other means of commu-
nication. The BCI research at our Human Media Interaction group focusses
on BCIs for healthy users, especially on gaming applications, which poses
some additional requirements on the BCI.

For successful BCI adoption in general, two key issues need to be ad-
dressed: 1) using a BCI should be easy, and require only small investments
(of either time or money), and 2) the BCI should be dependable, that is
to say it should function predictably with a known accuracy. In addition,
a BCI should be applied such that it provides something unique (e.g. a
covert measure of attention), since BCIs cannot yet compete on reliability
and speed with existing input devices for non-patients.

The first key issue excludes the possibility that brain signals are recorded
with expensive medical brain-imaging equipment. Fortunately, relatively
cheap consumer hardware with semi-dry electroencephalography (EEG)
sensors is already commercially available, solving the problem of monetary
investments to a large extent. What remains is that non-paralysed users
are probably not willing to invest weeks or even months to learn the skill to
intentionally modify their brain signals, which is common practice with tra-
ditional BCIs aimed at patients. BCIs based on machine learning already re-
duce the problem of time investment from weeks to minutes, through auto-
matic recognition of the user’s naturally occurring brain signals. But still, a
demanding and error-prone calibration session (in which the user is forced
to demonstrate mental tasks) is required before each use of the BCI. This
calibration session is needed because the electrical brain signals vary from
session to session. Removing this need of a repeated training session would
greatly expand the applicability of BCIs, and lower the barrier to entry.

The second key issue is related to the fundamental problem that is known
in the BCI field as non-stationary signals. The inherent variable nature of
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spontaneous EEG causes changes in the features that the BCI uses to detect
and classify brain signals. This variability violates basic assumptions made
by the machine learning (ML) methods used to train the BCI classifier, and
causes the classification accuracy to fluctuate unpredictably. These fluctu-
ations make the current generation of BCIs unreliable.

Both key issues are related; both the inter-session variability and the un-
reliability stem from not fully understood properties of fluctuation in the
neuronal signal’s feature distributions over time, sessions, and subjects. In
this dissertation, we will investigate the nature of these variations in the
EEG distributions, and introduce two new, complementary methods that
we have devised to overcome these two key issues.

To confirm the problem of non-stationary brain signals, we first show
that BCIs based on commonly used signal features are sensitive to changes
in the mental state of the user. We proceed by describing a method aimed at
removing these changes in signal feature distributions. Based on the insight
that a large class of BCIs is based on relative changes in spectral power, but
uses absolute power for classification, we have devised a method that uses
a second-order baseline (SOB) to specifically isolate these relative changes
in neuronal firing synchrony. To the best of our knowledge this is the first
BCI classifier that works on out-of-sample subjects without any loss of per-
formance. With these SOB features, we have effectively bypassed the prob-
lem of slowly changing non-stationary distributions. Still, the assumption
made by ML methods, that the training data contains samples that are in-
dependent and identically distributed (iid), is violated, because EEG sam-
ples nearby in time are highly correlated. This chronological structure is es-
pecially troublesome during the training of the classifier, since it may lead
to overfitting due to an overestimation of the amount of independent in-
formation present in the calibration session. We derived a generalization
of the well-known SVM classifier, that takes the chronological structure of
classification errors into account. Both on artificial data and real BCI data,
overfitting is reduced with this dSVM, leading to BCIs with an increased in-
formation throughput.

With the SOB features we have addressed the first key issue (of invest-
ment of time) for a motor imagery task. It is likely that this approach also al-
lows for cross-subject generalization of classifiers based on other neuronal
signatures. The second key issue is partially addressed with the dSVM. The
method demonstrates the feasibility of modeling the relatedness of brain
signals recorded nearby in time, which is necessary to prevent overfitting
in high-dimensional feature spaces derived from EEG. But, not assuming
iid feature distributions raises new questions regarding the interpretation
of BCI performance. With the two methods presented in this dissertation,
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we have paved the way for a new generation of BCIs — BCIs that work de-
pendably, and without the need of recalibration.
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Chapter 1

Introduction

A brain-computer interface (BCI) enables direct communication from
the brain to devices, bypassing the traditional pathway of peripheral

nerves and muscles. In the past, BCIs have been targeted mainly at paral-
ysed patients or patients with motor disabilities who have hardly any other
means of communication [21, 2, 73]. But the unique possibilities of BCI
technology are by no means limited to those in need; BCI technology en-
ables the use of signals related to attention, intentions and mental state,
without relying on indirect measures based on overt behaviour or other
physiological signals [75, 67, 35].

The traditional approach to BCIs is to provide the user with a device that
is controlled through a fixed function of the brain signals, and let the users
learn to voluntarily modify their brain signals, which takes weeks or even
months [73]. An alternative, more user friendly approach is to adapt the
BCI to the user’s naturally occurring brain signals with machine learning
(ML) methods (e.g. [69, 7]), which reduces the investment of time needed
for the first use of a BCI from weeks to minutes. Due to inter-subject varia-
tions in the measured neuronal activity linked to specific mental tasks (the
neuronal signature), a BCI session typically starts with a training session in
which the subject performs a known series of mental tasks. After this ses-
sion, these examples of brain activity are used to guide the optimization of
a classification model that decodes neuronal activity based on a few sec-
onds of the electroencephalography (EEG) signal. In this dissertation, we
take this latter approach. Note that the two approaches mentioned above
are not mutually exclusive.

The level of invasiveness is another major determining factor in BCI re-
search. In this dissertation, we focus on the use of the electrical signals that

1



2 CHAPTER 1. INTRODUCTION

are emitted by large ensembles of neurons, and are measured on the outside
of the scalp (i.e. EEG). Most BCI research in Europe is based on these ex-
ternal EEG measures. Research groups in the United States generally take a
more invasive approach, and place sensors under the scull, or even deep in
the brain. This has the advantage that the measurements are less contami-
nated with external noise, and suffer less from spatial smearing (blurring) by
the tissues between the neural sources and the sensors. The disadvantage
is that one needs to undergo surgery, and that the implants usually work for
a limited time. Less frequently used for BCIs are non-invasive measures of
brain activity based on magnetic fields (i.e. magnetoencephalogram, MEG),
or on depleting oxygen concentrations in the blood that indicate brain ac-
tivity, such as functional magnetic resonance imaging (fMRI) and functional
near-infrared spectroscopy (fNIRS) [74].

Most of the current BCI research focusses on better neuronal signatures
(i.e. neuroscience), better decoding of these neural signatures (i.e. signal
processing, machine learning) and on developing specific applications for
patients (e.g. speller grids). The traditionally clinical background of BCI
practitioners is reflected in the focus on trial-based discrimination between
a limited and tightly controlled set of tasks. Furthermore, the online evalu-
ation is often performed in an environment similar to these controlled off-
line experiments, with a classifier that is transplanted from off-line calibra-
tion data and used to classify batches of EEG after the task has been per-
formed as indicated by a cue.

1.1 BCIs for healthy users

Compared to other groups, the recently started BCI research within our Hu-
man Media Interaction (HMI) group takes a more holistic approach, and
attempts to create user friendly BCIs based on established neuronal signa-
tures, and evaluate these in unconstrained environments both on efficacy,
user experience and ethical considerations. HMI aims at BCIs for healthy
users, specifically applied in gaming contexts.

BCI gaming applications are interesting for several reasons. First, the
target population is huge, and gamers are known to be early adopters of
new technology. Second, a less than stellar BCI efficacy might not be prob-
lematic in the context of a game, and might even contribute an immersive
challenge (i.e. learn to control a magical in-game construct) [46]. If gamers
embrace BCI technology, this will provides scales to mass-produce hard-
ware and fund more research, which could eventually lead to feasible ap-
plications outside gaming. However, premature commercial exploitation of
BCI technology is feared by the field, as claims of interpreting brain signals
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are often exaggerated by commercial parties — which could lead to a disap-
pointed public.

The implied transition from a controlled lab to an unconstrained gam-
ing environment poses some new challenges. During gaming, signals pro-
duced by facial expressions, speech and eye movement heavily contami-
nate the, in comparison weak, EEG signals. As such, some of the research
at HMI explores the challenges and drawbacks of BCI combined with for
example speech recognition [27]. Most of our studies allow the user to be-
have naturally. The drawback is that this implies careful interpretation of
what measures are based on neuronal signals, and to what extent this is of
importance for the target audience.

These challenges of unconstrained environments are balanced by some
rather unique possibilities offered by the BCI. For example, the game can
use indicators of imminent movement to anticipate future actions of the
user, thereby blurring the boundary between the user’s intentions and ex-
plicit behaviour in interaction. More fundamentally, measures of the user
experience (e.g. workload, attention, or emotional states) can — if reliable
measures are found — be used to adapt the game to keep the user in a
state of being fully focused and immersed in the game. This mental state
is known as “flow” [16]. For this reason, some of our work focusses on auto-
matic recognition of mental states [56].

Another unique property of BCIs is that most conventional neural signa-
tures are related to some form of attention. For example, imaginary move-
ment produces changes in the sensory motor rhythm (SMR), and is mod-
ulated by attention [37]. Similarly, spelling applications for patients fre-
quently use the P300 response that is strongly linked to attention [26]. Other
examples include the steady-state visually evoked potential (SSVEP) res-
ponse to flickering lights, and direct measures of visual attention [67]. This
attentional aspect of these neural signatures is what makes them viable for
active BCI control.

By measuring attention, a BCI can offer valuable information that mea-
sures of behaviour never can: it can provide an indication of the context that
disambiguates the users behaviour. For example, a user making a phone call
could direct speech commands to the computer if we could detect that the
computer is the object of the user’s (covert) attention.

These unique applications depend on a BCI that can reliably detect nat-
urally occurring brain activity. Two key issues in the decoding of brain sig-
nals complicate the development of these applications.
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1.2 Key challenges for BCI adoption

We identify two key issues that need to be addressed for wide BCI adoption
in general: 1) using a BCI should be easy, and not require big investments by
the user (e.g. money and time), and 2) the BCI should be dependable, that is
to say it should function predictably, with a known accuracy [17, 68, 30]1. In
addition, the BCI should be applied such that it provides something unique
for non-patients, since it cannot (yet) compete on reliability and speed with
existing input devices.

Due to the availability of relatively cheap, semi-dry commercial EEG
headsets for gaming that show promise for proper BCI use [9], the first key
issue mainly revolves around investments of time. The investment of time
can be separated into user training and setup time; both should be kept very
short. The maximally acceptable setup time for amyotrophic lateral sclero-
sis (ALS) patients is around 30 minutes, with the maximum of 2–5 sessions
in total for user training [30]. While current BCIs based on machine learn-
ing (ML) methods can achieve competitive performance without any user
training [69, 4], the time needed to set up the recording equipment and to
record a calibration session typically exceeds this acceptable setup time.
Non-patients are probably even less willing to accept long investments of
time. Ideally, we would like to reduce the setup time to one or two minutes,
and remove the calibration and user training time altogether.

An example of the second key issue is described in the review of Wolpaw
et al. [73], where ALS patients in the experiment by Kübler et al. [39] report
to prefer a slower character-based speller over a faster word-based speller.
They felt more independent since the former was completely under their
control. Being in control implies that the BCI should not behave unexpect-
edly, but not necessarily that the BCI operates without errors. Lack of errors
is not strictly needed since there is a fundamental trade-off between the
number of errors and the speed of a BCI — the error rate can be reduced
by integrating predictions over a longer period of time. But this trade-off
only holds if the BCI makes mistakes with a constant probability. There-
fore, a BCI with a constant error rate should be preferred over a BCI with a
variable, but lower error rate, since the former can be relied upon, if slowed
down to acceptable error rates.

Unexpected, erratic BCI behaviour can be caused by non-stationary sig-
nals. This is known to be a fundamental problem in the BCI field. The inher-
ent variable nature of spontaneous EEG causes changes in the feature dis-
tributions used by the BCI to detect and classify brain signals. One source
of this variability in the EEG is related to changes in the user state. For ex-

1Note that a known accuracy does not imply that the accuracy has to be high.
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ample, differences in levels of alertness, fatigue, frustration and workload
level can alter the characteristics of the EEG. This variability violates basic
assumptions made by ML methods used to train the BCI classifier, and can
result in a loss of performance during the application of the BCI [62, 5, 36].
Most of the published work on non-stationary signals in BCIs focusses on
the changing distribution of the EEG, and explicitly attempts to reduce fea-
ture variability over time [28, 66, 5, 72, 44], or alternatively, to adapt the clas-
sifiers parameters to the changing distribution [62, 70]. An unsolved prob-
lem is that it is unclear how variability in the feature distributions influences
the BCI performance, since commonly used spatial filtering methods can
already remove task-irrelevant fluctuations to some degree. In this case, at-
tempting to remove the variability could introduce new problems that are
caused by difficulties in estimating the unrelated variability in EEG features.

Both key issues are interrelated, since they are based on not fully un-
derstood properties of fluctuation in feature distributions over time, ses-
sions and subjects. In this dissertation, we will investigate the nature of
these variations in the EEG distributions, and present two new, comple-
mentary methods that we have devised to overcome the key issues we have
described.

1.3 Contributions

To ground the problem, we will show in Chapter 2 that even changes in
the mental state of the user can induce changes in the EEG signals, and
that BCIs based on commonly used signal features are sensitive to these
changes. We will proceed in Chapter 3 by describing a method aimed at re-
moving these changes in signal feature distributions. Based on the insight
that a large class of BCIs are based on relative changes in spectral power,
but uses absolute power for classification, we will describe the new second-
order baseline (SOB) features that specifically isolate these changes in neu-
ral firing synchrony, thereby removing long-term and subject-specific de-
viations. Still, the assumption made by ML methods that the training data
contains samples that are independent and identically distributed (iid) is
violated, since samples nearby in time are highly correlated. This temporal
dependence is especially troublesome during the training of the classifier:
due to the overestimation of the amount of independent information con-
tained in the training set it leads to overfitting. In Chapter 4 we will present
a generalization of the well known support vector machine (SVM) classi-
fier, that takes the temporal dependence of features (and hence the depen-
dence of classification errors) into account. Both on artificial data and real
BCI data, overfitting is reduced with this dependent-samples support vector
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machine (dSVM), leading to an increased information throughput.



Chapter 2

Influence of loss of control

IT is widely believed that BCI performance fluctuates over time due to non-
stationary feature distributions [45, 5, 72, 69, 62, 36, 65, 73, 31]. These

non-stationary feature distributions violate the basic assumption made by
the classification models that the evaluation data (i.e. the online session) is
distributed identically to the data the model was trained on. This problem
is known as covariate shift, and leads to decreases in the classification per-
formance. Among the hypothesised causes for these non-stationary feature
distributions are changes in the mental state (e.g. fatigue, workload, loss of
control (LOC)) and artifacts [5, 31]. Although it seems plausible that mental
state changes that are detectable in the EEG can interfere with BCI opera-
tion, there is not much experimental evidence for this effect.

In this Chapter, we therefore describe an experiment1 we performed to
investigate the influence of a feeling of LOC on the detectability of move-
ments with the left and right index finger through the EEG. Changes in the
EEG related to users experiencing a state of LOC might lead to a decrease
in BCI performance due to the aforementioned covariate shift. In turn, the
user state is again influenced by the decreased performance of the BCI; for
example, the non-working BCI could cause increased frustration, anger and
reduced alertness. This interaction between the user state and the BCI per-
formance might result in a positive feedback loop, leading to a BCI that
spins out of control. Given the huge drawbacks of a BCI that can stop work-
ing depending on the mental state of a user, understanding the influence
of changes in the mental state on the BCI is of great importance to develop
reliable BCIs.

1 The work described in chapter was accepted for publication in the journal IEEE Transac-
tions of Neural Systems and Rehabilitation Engineering [55].

7
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In the following sections we will describe previous work on the relation
between mental states and BCI performance, the methods we used, our re-
sults, and a discussion of our experiment, followed by conclusions and di-
rections for future research.

2.1 Previous work

The influence of frustration associated with LOC on a BCI is of great interest
since it might cause the previously described feedback loop. This influence
was previously investigated in [31, 76]. In this study, users were instructed
to use real movement with their left or right hand to rotate respectively L or
R-shaped objects to a target position in order to study the effect of loss of
control on the BCI performance. The color of the letter indicated the an-
gle of rotation, and the user could press a key to rotate the object in the
direction indicated by the shape of the object every second. After perform-
ing a calibration block with cued left/right hand movement and two prac-
tise blocks with this so-called RLR paradigm, a LOC was simulated in the
third block by occasionally using a wrong angle of rotation in the applica-
tion. Both an event-related desynchronization (ERD) and an event-related
potential (ERP) based classifier were trained on the first block, and applied
to the other blocks in an off-line analysis. A significant difference between
the training block and the LOC block was found for the distribution of ERD
based features, but for ERP features no such difference was found. This
seems to indicate that there is variability in ERD features related to loss of
control.

However, the study described in [31, 76] is lacking on a few aspects. Most
notable is the limitation that changes in BCI performance due to the induc-
tion of LOC, the progression of time, differences in stimulation and user
behaviour cannot be distinguished. We were interested in the influence of
LOC on the BCI performance independent of these other factors. There-
fore we used 1) an interleaved block design to control for effects that mani-
fest spontaneously over time, such as increasing fatigue, changing temper-
ature, drying gel on the electrodes etc., 2) we used the same environment
for training and evaluating the BCI classifiers to minimize environmental
differences not related to LOC, 3) we used self-reported emotional ratings
to validate the effect of loss of control on the mental state and 4) we tested
and corrected for confounding behavioural changes, such as changes in the
force, speed or order of the finger movements, and eye movements.
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normal LOC

Figure 2.1: In the normal condition, the left button rotated the player 90◦

counterclockwise; the right button rotated the player 90◦ clockwise. In the
LOC condition, 15% of the keyboard input was ignored, and a visual lag was
induced (not shown).

2.2 Methodology

To study the effect of loss of control (LOC), we designed a Pacman game
that periodically reduced the amount of control the user has over his avatar.
The EEG was passively recorded during game play, and afterwards the off-
line performance of an ERD and an ERP based classifier was used to assess
the influence of LOC on the BCI performance. In the rest of this section,
we describe the data collection, the preprocessing and classification of the
EEG, and the evaluation method in more detail.

2.2.1 Data collection

A game was designed to induce a state of LOC, with game play similar to
the original Pacman game [52]. The major differences with other Pacman
games is that our game periodically tried to induce a state of LOC in the
user by responding unreliably to the keyboard commands. Since unreliable
input is a proven method for frustration induction [60, 32, 19], we expected
this method to induce mental state changes that were naturally associated
with LOC. To simplify (simulated) BCI control, the user input was reduced
to a button for the left index finger that turned Pacman 90 degrees coun-
terclockwise, and a button for the right index finger that turned Pacman
clockwise.

Experiment design

The LOC was induced in a randomized interleaved block design with exper-
imental blocks of two minutes. In one third of these two-minute blocks LOC
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was induced, in the other blocks the game play remained unmodified. The
LOC blocks were evenly distributed over the session by building a series of
shuffled sequences of three blocks (one LOC and two normal blocks). In the
LOC condition, the game randomly ignored 15% of the keystrokes, resulting
in a barely playable game. In addition, the display occasionally lagged in the
LOC condition. After each block, the user was asked to rate his mental state
in terms of valence (pleasure), arousal and dominance (subjective feelings
of control) on a Likert-scale presented under the self-assessment manikin
(SAM) [10].

Experimental procedure

Subjects were asked to read and sign a form of consent, and were subse-
quently wired with the EEG and physiological sensors. The experimenter
briefly explained the game and the self-assessment procedure. The sub-
ject was allowed to practise the controls for two minutes before the exper-
iment was started. If users mentioned that the game was unresponsive
during the experiment, the experimenter asked them to continue playing
and promised to find the cause later. After 30 minutes, the experimenter
stopped the experiment and the users were debriefed.

Sensors and recording

A BioSemi ActiveTwo EEG system was used to record the EEG and phys-
iological signals at a sample rate of 512 Hz. EEG was recorded with 32
Ag/AgCl active electrodes placed at locations of the Extended International
10-20 system. To measure the influence of ocular and muscle artifacts, we
recorded the EOG (horizontal and vertical pairs) and two pairs of EMG sig-
nals over the left and right flexor digitorum profundus (the muscles used
to press with the index finger). Additional physiological sensors, such as
temperature, respiration, the galvanic skin response and the blood volume
pulse were recorded as well, but not used in the present study2.

2.2.2 Preprocessing

The following preprocessing procedure was applied to reduce the influence
of noise and artifacts caused by eye movements and muscle tension: first
the recording was downsampled to 128 Hz to speed up processing. After
downsampling, the data was high-pass filtered using a 4th-order Butter-
worth filter to remove frequencies below 0.2 Hz, and notch-filtered using a

2The recordings are available at http://borisreuderink.nl/perm/affpac/.

http://borisreuderink.nl/perm/affpac/
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4th-order Butterworth filter from 49–51 Hz to remove power line noise. The
EEG was then corrected for eye movements using a regression based sub-
traction method [61]. To prevent noise from spreading to other channels,
we performed channel-level preprocessing before we applied the electrooc-
culography (EOG) correction and re-referenced the signals to the common
average reference (CAR).

2.2.3 Key press classification from EEG

Most motor imagery based BCIs are based on sensory-motor rhythms,
specifically the event-related desynchronization (ERD) that occurs during
both real and imaginary movement. As the ERD of real and imagined hand
movement is similar [43], we used real movement to train BCIs that predict
the movement from the EEG signal, since it provides a clear ground truth
and allows for a tighter controlled experiment. In this section we will out-
line the classifiers used for detection of the ERD and the ERP associated with
the movements executed to play the game.

ERD features

The ERD classification was based on the decrease in the Rolandic mu
rhythm (8–12 Hz) and Rolandic beta frequencies (peak around 20 Hz) on
the contra-lateral motor cortices that occurs when movement is initiated
[48]. After preprocessing, we applied a 6th-order Butterworth band-pass fil-
ter to extract the frequencies from 8–30 Hz, which includes both the mu and
beta rhythms. From this filtered EEG we extracted windows of one second,
centered on the moment that keystroke was registered. Visual inspection
confirmed that an ERD did indeed occur within this period. For these seg-
ments we trained subject-specific spatial filters with the common spatial
patterns (CSP) algorithm.

The CSP algorithm [34] finds a matrix W̃ with spatial filters that map the
EEG into a new space with basis vectors that have a high variance for the
first class and a low variance for the second, and vice versa. Given the num-
ber of sensors s , and the number of samples n , W is an s ×s transformation
matrix with the following property:

ΣW X1 =D and ΣW X1 +ΣW X2 = I , (2.1)

where D is a diagonal matrix with elements in descending order, I is the
identity matrix and ΣX i is the channel covariance matrix of the s × n EEG
measurements matrix X for given class i . Rows of W that correspond to a
high value in D have a high variance (power) for the first class and a low vari-
ance for the second, and vice versa. Because of this discriminatory property,
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the m
2

first and the m
2

last rows were picked to construct the final matrix W̃
with m = 6 spatial filters.

After applying the CSP algorithm, we calculated the variance (which
corresponded to the band power in the mu and beta band) for each trans-
formed channel, which resulted in m spatial band-power features.

ERP features

A less frequently used paradigm for classification of EEG related to move-
ment is based on the Bereitschaftspotential (BP), a negative ERP related to
movement initiation. The BP consists of an early phase beginning about 2
seconds before the movement onset, and a late phase with a steeper slope
400 ms before the onset [63]. We used the asymmetric distribution of the
late BP over the scalp for classification of the laterality of the hand move-
ments, which is known as the lateralized readiness potential (LRP).

For the ERP classification, we used the same preprocessing pipeline as
used with the CSP classification up to the band-pass filter. Then we applied
a (4th-order Butterworth) low-pass filter at 10 Hz, and again extracted win-
dows of one second centered on the moment of registration of keyboard
input. These trials were then transformed with a whitening transform P
which has the property that the transformed signals are uncorrelated, and
have unit variance:

ΣPX ≈ PΣX PT = I . (2.2)

With the eigenvalue decomposition ΣX =UΛU T , we find that

P =Λ−
1
2 U T . (2.3)

After whitening with P , we downsampled the signal by taking every fourth
sample point, resulting in a s× e

4
feature vector where e = 128 is the number

of samples in a classification window. Despite superficial differences, this
method for LRP classification is conceptually similar to the conventional
approaches for ERP detection, such as [3, 8], but does not rely on time seg-
ment or channel picking.

Classification

The ERD and LRP features were used to train a final linear SVM classifier.
The SVM’s regularization parameter c was selected with a separate cross-
validation loop on the two-minute blocks in training set.
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2.2.4 Loss of control analysis

To analyze the influence of user LOC on the performance of a BCI, we
trained a BCI on normal blocks, and measured the difference in perfor-
mance of the same classifier between unseen, normal blocks and unseen
blocks from the LOC condition. As we could not assume that the distribu-
tion of the EEG signal would remain stationary, training and evaluating a
BCI on samples uniformly spread over the sessions might lead to an over-
estimation of the performance. In order to have a more reliable measure
of how an online BCI would perform, we therefore used a special evalua-
tion scheme where complete experimental blocks were left out for evalua-
tion: The session consisted of a series of permutations of three experimental
blocks; two normal blocks, and a block with LOC simulation. For every three
blocks, we added the first normal block to the training set for the BCI clas-
sifier. The remaining normal and LOC block were used for evaluation. This
way, the training data was spread over time, but we still have independent
blocks for evaluation. Note that this evaluation is not symmetrical, since
the classifiers were trained only on normal blocks, but tested on blocks of
both the normal and LOC condition.

If there were difference between the normal and LOC conditions, we ex-
pected to find a lower performance on LOC blocks compared to block with
normal control, since the model was optimized for a different distribution
than the observations it was evaluated on had.

2.2.5 Performance measure

BCI classifiers are often evaluated by comparing their accuracy on out-of-
sample trials. The choice for the accuracy measure is problematic, as ac-
curacies (or equivalently, error rates) are hard to interpret when the prior
probabilities of the classes are unequal and/or variable. Furthermore, the
statistic does not take the time needed to perform a trial (key press) into ac-
count: due to our short inter-trial intervals (ITIs), lower accuracies were to
be expected for our BCIs than the accuracies reported for more traditional
BCI environments, where multiple seconds are used to detect an imagined
movement. Despite these drawbacks, we will provide accuracy measures
because it is commonly used.

A more informative measure is the information transfer rate (ITR),
which conveniently captures the amount of information a user can com-
municate through a (noisy) channel with an optimal encoding strategy. It
does so by combining the quality of and the time needed for the predic-
tions. As such, the ITR is a better measure to evaluate BCI performance.
Note that different formulas to calculate the ITR are used in the BCI litera-
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ture, for example Wolpaw’s definition in [73] is often used. The drawback
of this definition is that it has a number of assumptions that are often vio-
lated in practice, most notably the assumption that all classes have the same
prior probability. The ITR based on mutual information (MI) does not rely
on these assumptions, hence we use MI to measure the information con-
tained in the prediction of a single trial. Note that the labels of the trials still
need to be independent of each other for a correct estimate of the ITR.

The MI expresses the decrease in uncertainty of a discrete variable Y
(the true labels), given a discrete variable Z (the predictions of the classi-
fier):

I (Z ;Y ) =
∑

y∈Y
z∈Z

p (z , y ) log2

p (z , y )
p1(z )p2(y )

, (2.4)

where p (z , y ) is the joint probability distribution and p1(z ) and p2(y ) are
the marginal probability distribution functions ofZ andY . With the base-
2 logarithm the reduction in uncertainty is expressed in bits. We use the MI
between the classifiers predictions and the ground truth as a second per-
formance measure. The joint and marginal probabilities in (2.4) were esti-
mated by their relative frequency of occurrence in the confusion matrix.

Finally, we calculate the third measure ITR R , in bits per minute, based
on the MI (2.4), and the median3 inter-trial interval med(∆t ):

R = 60
I

med(∆t )
. (2.5)

As a fourth, and last performance measure, we use the area under the
curve (AUC) of the receiver operating characteristic (ROC) [22] to express
the ranking performance of the classifier. The AUC is equal to the proba-
bility that a randomly chosen instance of the first class is ranked above a
randomly chosen instance of the second class; in other words, an AUC of
0.5 indicates random performance, and an AUC of 0 or 1 indicates perfect
ranking ability. Like the MI, the AUC does not assume equal prior probabil-
ities.

Originally we planned to use the Kullback-Leibler divergence (KLD) as a
measure of change in the feature distributions as in [62], but the assumption
that the features are normally distributed was violated heavily by both our
ERD features (even after log-transforming) and our LRP features. This made
the estimation of the KLD unfeasible due to the need for high-dimensional
density estimation.

3We use the median instead of the mean because∆t appeared to follow a Poisson distribu-
tion.
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2.2.6 Confounding factors

To induce mental state change associated with LOC, we intentionally de-
graded the quality of control. Behavioural changes (e.g. repetitive and
force-full keystrokes, and more frequent gazing at the hands) might have
occurred as a result of the method of induction. Therefore, potential differ-
ences in BCI performance might have been caused solely by these changes
in behaviour. In this context, behavioural changes are confounding factors,
and need to be corrected for.

However, we cannot discern behavior caused by the method of induc-
tion and behaviour caused by induced changes in the mental state. Correct-
ing for confounding factors could therefore reduce the variation in mental
state, and lead to an underestimation of the effect. Therefore, we performed
our analysis both with and without correction for confounding behaviour.

Behavioural changes that we identified as confounding factors were the
inter-trial interval (ITI), the repetition of keystrokes with the same hand,
the fraction of keystrokes per hand, the force used to press a key, and eye
movements. The ITI can be confounding because the EEG is analyzed over
a short period of time; keystrokes that follow each other quickly could lead
to masking of relevant EEG features, or worse, to the leaking of label infor-
mation from one keystroke to the next. Repetition of strokes with the same
hand might lead to increased performance for the same reason. Force is
a confounding factor because force has an influence on the ERD [64]. Ar-
tifacts related to eye movements are known to have a profound influence
on EEG analyses, but these were (greatly) attenuated by the EOG regression
method during preprocessing.

To correct for the confounding factors, we used multi-variate frequency
matching. Frequency matching involves stratifying the distribution of the
confounding variable, and drawing samples such that the number of sam-
ples within each stratum is the same per condition [1]. In our case, the mul-
tivariate distributions of the previously described confounding variables in
the normal and LOC conditions were matched.

These confounding factors were quantified as follows. To quantify the
ITI, we used the logarithm of the difference in seconds between consecu-
tive trials. The keystroke patterns were modeled with a discrete bivariate
distribution of the label of the current and previous trial. For force, a bivari-
ate (i.e. left and right arm’s EMG power) distribution of the log-transformed
electromyography (EMG) power was used. To calculate the EMG power, the
procedure outlined in [29]was used: 1) apply a high-pass filter with a cut-off
of 30 Hz, 2) apply the Hilbert transform to extract the envelope of the signal
and 3) apply a low-pass filter with a cut-off of 40 Hz to smooth the signal.

A multi-dimensional histogram with regularly spaced bins was used to
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extract strata for frequency matching: 4 bins were used for log ITI, 2×2 bins
were used for label patterns, and 5×5 bins were used for log EMG power for
index fingers.

2.2.7 Statistical tests

Comparisons over subjects were performed using Wilcoxon signed-rank
tests, on pairs of per-condition averages for each subject. This test is a
non-parametric alternative to the commonly used paired Student’s t-test,
which could not be applied because the t-test’s assumptions that the mea-
surements are normally distributed and have equal variances do not hold
for classification performance [18].

In addition to this over-subjects analysis, we performed a more sensitive
meta analysis that combines the within-subject p -values to test for individ-
ual differences (as opposed to group differences). It combines the p -values
of different subjects to reject the combined null hypothesis H0, that states
that each of the individual null hypotheses is true. The combined alterna-
tive, HA , is that at least one is not true. For this purpose, Fisher’s method
was suggested in [42] for combining p -values:

X 2 =−2
k
∑

i=1

loge p i , (2.6)

where p i is the p -value for subject i . When the null hypotheses are all true,
and the p i ’s are independent, X 2 follows a χ2 distribution with 2k degrees
of freedom. Note that opposing effects might be combined in a significant
outcome with the Fisher’s method if two-sided tests are used.

We used a significance level α= 0.05 for all tests presented in this chap-
ter.

2.3 Results

2.3.1 Subjects

Twelve healthy users (age 27±3.9) participated in the experiment. All partic-
ipants had normal, or corrected to normal vision, and reported not to use
medication. Only three of our subjects were female, and all subjects were
right-handed. Most participants had some video game experience, and four
subjects had previous experience with BCIs.
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Figure 2.2: The histogram for the time between key presses during game play
for all subjects. The intervals for the normal condition are displayed in black,
the LOC condition is displayed in red (gray). The histogram is dominated by
short∆t ’s between key presses. The histogram of the LOC condition seems to
be slightly more pinched around half a second.

2.3.2 Self assessments

To verify the induction of changes in the mental state, we analysed the self
reported emotional ratings of the SAM. Most subjects rated the LOC con-
dition more negatively than the normal condition, over subjects this dif-
ference was significant (T=3, p<0.01). While we expected to find a trend
towards more arousal in the LOC condition, there was no significant dif-
ference (T=23, p=0.26). The dominance dimension, which measures the
amount of dominance, or control they have on their environment, indicate
that people seemed to be significantly (T=3.5, p<0.01) more in control in
the normal condition.

2.3.3 Confounding behavioural differences

In this section we describe the analysis of the characteristics of the user’s
behaviour, as it might have had a confounding influence on the BCI perfor-
mance. Both differences in the ITI, and the pattern of consecutive keystrokes
can indicate a confounding behavioural change. The per-subject statistics
for these confounding factors are presented in Table 2.1. For the log ITI,
we see an insignificant tendency to shorter intervals between key presses
in the LOC condition. The probability that a key press was made with the
same hand is significantly higher in the LOC condition. This may have been
caused by increased repetition, by increased imbalance of the class ratios, or
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Figure 2.3: The mean log EMG power and its standard deviation (dashed
lines) is displayed for both the normal and LOC condition, time-locked to
the key press at t = 0. The top plot shows the EMG power of the left bipolar
channel for left index-finger presses, the bottom plot show the EMG power for
right hand movement measured with the right bipolar channel.

Table 2.1: Statistics of confounding variables. The repetitiveness (second col-
umn) and log-EMG power (last column) differ significantly between the con-
ditions. The EMG power was quantified as the maximum power in the inter-
val [-0.2, 0] s. The start and end of the arrow signify the mean value in the
normal and LOC condition respectively.

log∆t p (yt = yt−1) log pow. EMG L log pow. EMG R

S0 -0.48→ -0.36 0.51→ 0.59 1.31→ 1.21 1.08→ 1.15
S1 -0.51→ -0.53 0.54→ 0.59 2.70→ 2.60 2.04→ 2.17
S2 -0.54→ -0.59 0.50→ 0.52 2.65→ 2.58 2.51→ 2.46
S3 -0.47→ -0.61 0.56→ 0.54 1.99→ 1.88 2.15→ 2.31
S4 -0.46→ -0.55 0.53→ 0.58 3.14→ 3.35 1.76→ 1.86
S5 -0.46→ -0.44 0.56→ 0.60 2.70→ 2.56 4.06→ 3.91
S6 -0.46→ -0.48 0.55→ 0.55 2.11→ 2.55 2.14→ 2.47
S7 -0.40→ -0.55 0.58→ 0.56 1.70→ 1.71 2.13→ 2.14
S8 -0.37→ -0.44 0.47→ 0.56 2.89→ 2.95 2.94→ 3.02
S9 -0.58→ -0.55 0.45→ 0.54 3.02→ 3.08 2.01→ 2.06

S10 -0.58→ -0.44 0.47→ 0.53 2.43→ 2.42 2.52→ 2.55
S11 -0.45→ -0.42 0.52→ 0.58 3.01→ 2.86 2.97→ 3.13

mean -0.48→ -0.50 0.52→ 0.56 2.47→ 2.48 2.36→ 2.44
Wilc. T=32, p=0.583 T=6, p=0.010 T=31, p=0.530 T=12, p=0.034
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Figure 2.4: The vertical eye movement (first row) show downward eye-gaze
just after a keystroke at t = 0. The horizontal bipolar EOG channel is rather
uneventful, only for right hand movement (last column) does there appear to
be a delayed reaction to the key press, first negative (looking left) then positive
(looking right). The dashed lines indicate the standard deviation. There is no
significant difference (16 point Bonferroni corrected Wilcoxon signed-rank
test over subjects) between the normal (black) and LOC condition (red).

a combination thereof. Nevertheless, it indicates a significant behavioural
change.

The temporal development of the EMG signal is displayed in Fig. 2.3.
An increase in the EMG power is visible just before the stroke is registered,
and a much weaker increase is visible when the key is released. Most of the
activity is registered in the interval [-0.2, 0] s relative to the registration of
the key press. We used the maximum EMG power in this interval to estimate
the force used to press a key (see Table 2.1). Movements with the right index
finger produce significantly more EMG power in the LOC condition.

Although we removed (most) of the influence of the EOG signal from the
EEG, it is interesting to look at the user’s gaze and blink behaviour during a
key press (Fig. 2.4). We can see that users tend to look at their hands 200 ms
after a key press, which is most visible in the vertical EOG, and at 300 ms,
the variability of the vertical EOG signal seems to increase. This might be
caused by eye-blinks, or an adjustment to the new movement direction of
the avatar in the game.

In summary, our behaviour analysis has shown that the normal and
LOC-conditions are very similar in the timing, the predictability of the key-
strokes, the amount of force used to press the keys, and in eye movements.
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Table 2.2: The influence of LOC on a CSP classifier is shown below, with-
out correction for confounding factors. The start and end of the arrow in-
dicate the median performance for the normal and LOC condition respec-
tively. The p -value of a Mann-Whitney U test on the per-block performance
is displayed above the arrow. The row denoted with “Wilc.” signifies the over-
subject comparison with the Wilcoxon signed rank test. The row denoted by
“Fish.” presents the results of combining one-sided p -values for an increase
in performance.

Accuracy AUC MI ITR

S0 0.679
p=0.35
−−−→ 0.736 0.759

p=0.35
−−−→ 0.843 0.110

p=0.35
−−−→ 0.193 11.680

p=0.48
−−−→ 13.763

S1 0.599
p=0.48
−−−→ 0.618 0.616

p=0.64
−−−→ 0.652 0.021

p=0.64
−−−→ 0.041 2.601

p=0.64
−−−→ 4.525

S2 0.619
p=0.92
−−−→ 0.555 0.543

p=0.62
−−−→ 0.578 0.001

p=0.77
−−−→ 0.000 0.088

p=0.92
−−−→ 0.025

S3 0.474
p=0.13
−−−→ 0.519 0.466

p=0.05
−−−→ 0.518 0.004

p=0.62
−−−→ 0.003 0.452

p=0.77
−−−→ 0.338

S4 0.519
p=0.92
−−−→ 0.507 0.549

p=0.92
−−−→ 0.526 0.002

p=0.77
−−−→ 0.003 0.224

p=0.77
−−−→ 0.351

S5 0.741
p=0.92
−−−→ 0.750 0.828

p=0.92
−−−→ 0.832 0.167

p=0.92
−−−→ 0.188 15.616

p=0.92
−−−→ 20.297

S6 0.538
p=0.65
−−−→ 0.529 0.543

p=0.86
−−−→ 0.522 0.003

p=0.59
−−−→ 0.006 0.302

p=0.59
−−−→ 0.664

S7 0.544
p=0.10
−−−→ 0.600 0.565

p=0.27
−−−→ 0.657 0.005

p=0.19
−−−→ 0.027 0.532

p=0.08
−−−→ 3.082

S8 0.542
p=0.34
−−−→ 0.581 0.556

p=0.34
−−−→ 0.589 0.004

p=0.48
−−−→ 0.010 0.366

p=0.48
−−−→ 1.035

S9 0.735
p=0.15
−−−→ 0.768 0.797

p=0.15
−−−→ 0.839 0.160

p=0.15
−−−→ 0.218 18.879

p=0.15
−−−→ 24.494

S10 0.612
p=0.35
−−−→ 0.582 0.670

p=0.48
−−−→ 0.651 0.046

p=0.35
−−−→ 0.018 5.611

p=0.35
−−−→ 2.108

S11 0.608
p=0.34
−−−→ 0.553 0.594

p=0.95
−−−→ 0.599 0.020

p=0.95
−−−→ 0.023 2.371

p=0.64
−−−→ 2.059

mean 0.601→ 0.608 0.624→ 0.651 0.045→ 0.061 4.893→ 6.062
Wilc. T=31.0, p=0.530 T=12.0, p=0.034 T=14.0, p=0.050 T=17.0, p=0.084
Fish. p=0.123 p=0.078 p=0.259 p=0.222

However, there was a small but significant increase in repetition of the same
movement, and a small significant increase in the force used with the right
hand. After balancing the confounding variables and their interactions per
subject, on average 25% of the original trials were removed.

2.3.4 Impact of loss of control on the BCI

To investigate the influence of LOC on the BCI performance, we trained the
ERD based and the ERP-based classifier on blocks from the normal con-
dition, and compared the performance on unseen normal blocks with the
performance on blocks from the LOC condition. Please refer to Section 2.2.4
for more information on this procedure.

The performance of the CSP based features classifier on the normal and
LOC blocks without correction for confounds is displayed in Table 2.2. The
single trial detection accuracy may seem rather low (60%), but this is sim-
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Table 2.3: The influence of LOC on a CSP classifier is shown below, with cor-
rection for confounding factors enabled. Please refer to Table 2.2 for an ex-
planation.

Accuracy AUC MI ITR

S0 0.678
p=0.64
−−−→ 0.667 0.718

p=0.35
−−−→ 0.785 0.094

p=0.82
−−−→ 0.056 7.370

p=0.95
−−−→ 4.896

S1 0.543
p=0.05
−−−→ 0.646 0.572

p=0.09
−−−→ 0.686 0.007

p=0.05
−−−→ 0.063 0.734

p=0.09
−−−→ 6.751

S2 0.640
p=1.00
−−−→ 0.626 0.558

p=0.92
−−−→ 0.548 0.009

p=0.19
−−−→ 0.002 0.825

p=0.27
−−−→ 0.165

S3 0.541
p=0.62
−−−→ 0.553 0.483

p=0.62
−−−→ 0.514 0.007

p=0.77
−−−→ 0.005 0.482

p=0.62
−−−→ 0.450

S4 0.569
p=0.19
−−−→ 0.532 0.572

p=0.77
−−−→ 0.536 0.013

p=0.92
−−−→ 0.008 1.416

p=0.92
−−−→ 0.769

S5 0.753
p=0.77
−−−→ 0.743 0.857

p=0.62
−−−→ 0.821 0.198

p=0.77
−−−→ 0.180 14.086

p=0.77
−−−→ 15.423

S6 0.532
p=0.21
−−−→ 0.558 0.498

p=0.01
−−−→ 0.579 0.004

p=0.10
−−−→ 0.011 0.308

p=0.06
−−−→ 0.874

S7 0.549
p=0.37
−−−→ 0.577 0.613

p=0.92
−−−→ 0.623 0.010

p=0.49
−−−→ 0.015 0.964

p=0.37
−−−→ 1.534

S8 0.543
p=0.48
−−−→ 0.605 0.549

p=0.23
−−−→ 0.583 0.002

p=0.02
−−−→ 0.017 0.166

p=0.02
−−−→ 1.394

S9 0.687
p=0.23
−−−→ 0.740 0.783

p=0.23
−−−→ 0.833 0.086

p=0.15
−−−→ 0.162 8.770

p=0.15
−−−→ 16.045

S10 0.658
p=0.05
−−−→ 0.617 0.676

p=0.82
−−−→ 0.673 0.054

p=0.24
−−−→ 0.035 4.888

p=0.35
−−−→ 3.147

S11 0.585
p=0.23
−−−→ 0.551 0.615

p=0.01
−−−→ 0.544 0.021

p=0.23
−−−→ 0.005 1.329

p=0.15
−−−→ 0.366

mean 0.606→ 0.618 0.625→ 0.644 0.042→ 0.047 3.445→ 4.318
Wilc. T=31.0, p=0.530 T=27.0, p=0.347 T=35.0, p=0.754 T=35.0, p=0.754
Fish. p=0.237 p=0.050 p=0.063 p=0.047

ilar to the accuracies obtained in other studies that use short ITIs, such as
[31]. This was also reflected in the mean ITR of 5.5 bits per minute, which is
comparable to the ITRs obtained by naive users with motor-imagery based
ERD BCIs. Despite this low recognition rate, the ERD BCIs performance did
significantly increase in the LOC condition for the AUC and MI measures.

When correction for confounding factors was performed, the results were
different (Table 2.3); the over-subject differences disappeared, but there
were more significant within-subject differences in sometimes opposing di-
rections. Combined with Fisher’s method, the one-sided p -values for a within-
subject increase in performance was significant for both AUC and ITR. This
indicates at least one individual increase in performance was significant at
the α= 0.05 level.

The spatial distribution of the movement related ERD is shown in
Fig. 2.5. Subjects S0, S1, S5, S9 and S10 do display the prototypical ERD
on the motor cortices. Remarkably, these activations are more pronounced
in the LOC condition (second row), which supports the observed increase
in performance. Note that the CSP classification is based on covariance of
the EEG channels, while in this figure only the variance is shown.

In contrast to the ERD based classifiers, the ERP classifiers had a con-
stant high performance with a minimum ITR of 11.6 bits per minute. Fur-
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Table 2.4: The influence of LOC on a ERP classifier is shown below, without
correction for confounding factors. Please refer to Table 2.2 for an explana-
tion.

Accuracy AUC MI ITR

S0 0.765
p=0.73
−−−→ 0.747 0.824

p=0.95
−−−→ 0.812 0.223

p=0.64
−−−→ 0.179 24.349

p=0.48
−−−→ 17.575

S1 0.802
p=0.34
−−−→ 0.758 0.866

p=0.64
−−−→ 0.823 0.282

p=0.23
−−−→ 0.195 32.838

p=0.34
−−−→ 22.092

S2 0.726
p=0.27
−−−→ 0.750 0.790

p=0.49
−−−→ 0.809 0.142

p=0.62
−−−→ 0.154 16.269

p=0.37
−−−→ 18.677

S3 0.711
p=0.77
−−−→ 0.724 0.779

p=0.62
−−−→ 0.788 0.133

p=0.77
−−−→ 0.139 11.719

p=0.77
−−−→ 16.195

S4 0.692
p=0.92
−−−→ 0.714 0.767

p=0.37
−−−→ 0.803 0.096

p=0.92
−−−→ 0.110 11.672

p=0.77
−−−→ 11.882

S5 0.720
p=0.77
−−−→ 0.715 0.800

p=0.92
−−−→ 0.790 0.142

p=0.92
−−−→ 0.136 14.584

p=0.62
−−−→ 15.041

S6 0.703
p=0.15
−−−→ 0.726 0.766

p=0.15
−−−→ 0.789 0.116

p=0.10
−−−→ 0.155 13.460

p=0.10
−−−→ 16.812

S7 0.772
p=0.77
−−−→ 0.778 0.833

p=0.62
−−−→ 0.857 0.225

p=0.77
−−−→ 0.234 23.515

p=0.62
−−−→ 26.844

S8 0.702
p=0.64
−−−→ 0.742 0.778

p=0.05
−−−→ 0.830 0.121

p=0.64
−−−→ 0.175 10.529

p=0.23
−−−→ 18.768

S9 0.831
p=0.48
−−−→ 0.785 0.886

p=0.34
−−−→ 0.873 0.328

p=0.48
−−−→ 0.246 38.768

p=0.34
−−−→ 29.488

S10 0.704
p=0.82
−−−→ 0.701 0.790

p=0.95
−−−→ 0.783 0.129

p=0.82
−−−→ 0.120 14.146

p=0.95
−−−→ 14.663

S11 0.835
p=0.81
−−−→ 0.843 0.931

p=0.81
−−−→ 0.921 0.344

p=0.64
−−−→ 0.375 41.528

p=0.81
−−−→ 38.285

mean 0.747→ 0.749 0.818→ 0.823 0.190→ 0.185 21.115→ 20.5
Wilc. T=32.0, p=0.583 T=30.0, p=0.480 T=36.0, p=0.814 T=37.0, p=0.875
Fish. p=0.546 p=0.197 p=0.570 p=0.350

Table 2.5: The influence of LOC on a ERP classifier is shown below, with cor-
rection for confounding factors enabled. Please refer to Table 2.2 for an ex-
planation.

Accuracy AUC MI ITR

S0 0.710
p=0.35
−−−→ 0.732 0.800

p=0.64
−−−→ 0.820 0.134

p=0.48
−−−→ 0.164 11.145

p=0.95
−−−→ 9.779

S1 0.810
p=0.15
−−−→ 0.777 0.870

p=0.48
−−−→ 0.854 0.295

p=0.15
−−−→ 0.233 28.990

p=0.23
−−−→ 19.258

S2 0.720
p=0.92
−−−→ 0.746 0.792

p=0.77
−−−→ 0.801 0.121

p=0.62
−−−→ 0.127 12.031

p=0.77
−−−→ 12.806

S3 0.716
p=0.77
−−−→ 0.702 0.763

p=0.62
−−−→ 0.766 0.133

p=0.92
−−−→ 0.134 9.135

p=0.27
−−−→ 11.983

S4 0.696
p=0.62
−−−→ 0.707 0.759

p=0.77
−−−→ 0.787 0.110

p=0.77
−−−→ 0.133 12.860

p=0.37
−−−→ 13.445

S5 0.640
p=0.77
−−−→ 0.649 0.729

p=0.92
−−−→ 0.735 0.094

p=0.27
−−−→ 0.071 7.364

p=0.92
−−−→ 6.853

S6 0.671
p=0.47
−−−→ 0.695 0.769

p=0.86
−−−→ 0.760 0.086

p=0.47
−−−→ 0.124 6.197

p=0.72
−−−→ 7.992

S7 0.739
p=0.92
−−−→ 0.733 0.824

p=0.77
−−−→ 0.811 0.174

p=0.92
−−−→ 0.164 15.149

p=0.92
−−−→ 15.587

S8 0.709
p=0.05
−−−→ 0.799 0.777

p=0.02
−−−→ 0.847 0.106

p=0.05
−−−→ 0.265 9.679

p=0.02
−−−→ 21.099

S9 0.845
p=0.34
−−−→ 0.803 0.925

p=0.23
−−−→ 0.874 0.379

p=0.48
−−−→ 0.278 35.293

p=0.34
−−−→ 29.589

S10 0.671
p=0.82
−−−→ 0.688 0.764

p=0.95
−−−→ 0.765 0.089

p=0.82
−−−→ 0.099 7.261

p=0.35
−−−→ 9.269

S11 0.835
p=0.81
−−−→ 0.822 0.921

p=0.34
−−−→ 0.883 0.350

p=0.81
−−−→ 0.331 23.343

p=0.64
−−−→ 26.231

mean 0.730→ 0.738 0.808→ 0.809 0.173→ 0.177 14.871→ 15.3
Wilc. T=31.0, p=0.530 T=38.0, p=0.937 T=36.0, p=0.814 T=28.0, p=0.388
Fish. p=0.392 p=0.484 p=0.456 p=0.162
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thermore, they did not seem to behave differently in the LOC condition,
not with (Table 2.5) and not without correction for confounding factors (Ta-
ble 2.4). Visual inspection of the classifier’s weights confirmed that the most
discriminative features were located on the motor cortices, that is to say,
the BCI was based on brain activity. The increase in performance for S8 is
probably a false positive, since the combination over subjects with Fisher’s
method is not significant.

2.4 Conclusions and future work

In this chapter, we have presented an experiment in which a simulated non-
responding brain-computer interface (BCI) controller was used to study
whether changes in the user’s mental state have an influence on the BCI per-
formance. The self-reported emotional ratings confirmed that the loss of
control (LOC) condition induced a more negative, and less dominant men-
tal state. These different mental states were accompanied with minor be-
havioural changes for which we corrected the analysis.

Contrary to our expectations, we observed a significant performance in-
crease during the LOC condition for the event-related desynchronization
(ERD) based BCIs. For the event-related potential (ERP) based BCIs, we
found no change in performance. The image of a BCI spiralling completely
out of control that we sketched in the introduction appears to be an illusion.
However, the difference in performance demonstrates that variabilities in
the feature distributions related to LOC do in fact exist, and could be more
dire under different circumstances.

For future work in this direction, a logical next step would be to investi-
gate the origin of the increase of performance for ERD classifiers. We sus-
pect that it might be related to a shift in attention from the game context
during normal play to the movement of the hands in the LOC condition.
Since the strength of the beta band event-related synchronization (ERS) is
related to attention in constant isometric force motor tasks [37], an increase
of attention on the motor task in the LOC condition could result in more
pronounced beta ERD/ERS, and indirectly lead to better classification re-
sults. This would form an interesting hypothesis for a follow-up study. Re-
lated is also the study presented in [33] that shows a pronounced beta re-
bound when the observed movement does not match the movement the
user was supposed to execute.

The recordings from our current experiments could also be analyzed
for correlates with emotions, as we have user-reported ratings of emotions
for every two-minute block in the experiment. The first steps in this di-
rection have been taken in [56]. The recognition of emotions from elec-
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troencephalography (EEG) would be immensely valuable to both locked-in
patients — who would otherwise have to verbalise their mood using other
means, such as the P300 speller — and to healthy users.
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Chapter 3

Cross-subject generalization

IN Chapter 2 we demonstrated that BCIs based on oscillatory (ERD) fea-
tures are sensitive to changes in the mental state — changes that are un-

related to the mental task used to control the BCI. While the ERP based clas-
sifiers were proven to result in higher and more reliable performance than
their ERD counterparts, here we focus on improving the ERD based classi-
fiers that exhibit the problematic drifts in performance well known in the
BCI field1. The reason we focus on a ERD based BCI is that it is well stud-
ied, and known to work when the user only imagines movement, and does
not actually perform movement as was the case in Chapter 2; for lateral-
ized readiness potential (LRP) classification we are not aware of BCI studies
with fully imagined movement. Furthermore, improvement obtained with
movement-related ERD might prove to be beneficial for other oscillatory
brain signatures, such as those related to covert attention [e.g. 67].

Changes in BCI performance might be caused by changes in the gen-
erating processes (e.g. due to changes in attention, or different processes
for motor control), or more generally, by changes in the joint distribution
of task-relevant and task-irrelevant EEG features. This means that not only
changes in the task-relevant neural activity, but also unrelated changes (e.g.
LOC in the previous chapter) might affect the BCI. Changes or drifts in the
feature distributions pose a problem for automatic discrimination, since
the ability to generalize to new data of a static BCI classifier depends on
the appropriateness of the learned decision function for the online data.
When there is a change in the feature distribution compared to the calibra-
tion data (covariate shift), it is likely that the quality of the predictions will
degrade; the BCI classifier does not generalize well to this data. This diffi-

1This chapter is based on [54], accepted for oral presentation at EMBC’2011.

27
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culty of generalization holds for application of a trained BCI to future data
within the same session, to new sessions of the same subject, and to other
subjects, in increasing order of difficulty.

Being able to successfully apply a BCI to new sessions and subjects is
relevant for various reasons. Practically, a BCI that does not require a cal-
ibration session before each use is much more user friendly. Secondly, if
a BCI generalizes to new users this indicates that the mechanism used to
classify is a generic one. This aids interpretation of the neural signatures
used for control. And finally, if a BCI is known to operate robustly during
changing contexts (i.e. mental states, recording environment), this means
its operation is not depending on these contexts.

To achieve generalization under covariate-shift, either the classifier can
be adapted to the changing feature distributions [71, 62], or the spatial fil-
ters themselves can be adapted [72, 44, 66, 28, 57, 5, 62]. The advantage of
adapting the spatial filters is that a wide variety (e.g. disconnected sensors)
of distribution changes can be tracked when they are estimated correctly.
While adaptation of the classifier cannot handle all these changes, due to
its simplicity it is easier to estimate, and can therefore be more robust. A
further distinction can be made between methods that perform adapta-
tion only during the (off-line) training phase [e.g. 72, 44, 5], and methods
that perform online adaptation [71, 66, 28, 57, 62]. The off-line adaptation
methods implicitly assume that there is a spatial subspace that is stationary,
and retains most of the discriminatory information. It is unclear whether
such a subspace does indeed exist. Therefore, we took the most flexible ap-
proach, that combines online adaptation with adaptation in feature space
(i.e. adaptation of the spatial filters).

In this chapter, we will present a second-order baseline (SOB) procedure
that reduces long-term, non task-related variations. This procedure enables
the creation of a BCI that can be applied to new subjects without a calibra-
tion session. Since non-stationary distributions of specifically ERD based
features have been reported in [62, 5, 31] and are supported by the results
presented in Chapter 2, we evaluate our method with ERD based features
— although it is in no way limited to this type of feature extraction.

In the next sections, we will describe prior work on subject-independent
classification, outline our baselining method and describe an off-line ex-
periment used to assess the performance on unseen subjects. Then we will
describe and discuss the results, and end with conclusions and remarks for
future work.
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3.1 Previous Work

Progress has been made to make machine learning (ML) based BCIs gener-
alize to new sessions and new users. The zero training method described
in [36] is one of the first attempts to extend the applicability of the popular
common spatial patterns (CSP) algorithm to generalize from one session
to another session. The method attempts to find prototypical spatial filters
from past sessions of a specific subject, and uses a small number of trials
of the current session to update the BCI classifier. Using these prototypical
filters a performance similar to CSP performance was obtained. Although
this result is a promising step towards zero training, historical EEG data and
a minimal calibration session are still required.

To overcome these limitations, an ensemble method [23]was developed
that selects a sparse set of subject-dependent (SD) spatio-spectral filters
derived from a large database with the recordings of 45 subjects. With a
wide-band frequency filter (as used in our study), a subject-independent
(SI) classifier performed almost as well (68% correct) as the average SD CSP
classifier (70% correct). However, the SI classifier’s predictions were post-
processed with a non-causal bias-correction, which prevents online appli-
cation. Without post-processing the best SI classifier still scores much lower
than the SD classifiers with 63% of the trials correctly classified.

Combinations of different feature extraction methods and different clas-
sifiers were compared on their ability to discriminate between classes of
imaginary movement in unseen subjects in [41]. Of all tested combinations,
a filter-bank CSP classifier that used frequency filters with different band-
widths had the best SI performance (71% correct). This is slightly above the
SI performance of naive log band-power features (68%), and far below the
best SD classifier (82%).

These three studies indicate that constructing an SI BCI classifier that
generalizes to new subjects is quite challenging. With complex feature ex-
traction as done in [41] and spatial filter matching as done in [36, 23], the
performance can approach the SD CSP performance.

3.2 Methods

During the initiation of imaginary movement, an ERD in theµ-band is often
observed in the motor cortices. For BCIs based on ERD, the spatially filtered
EEG is used to compute band-power related features which are then classi-
fied with a linear classifier.

Unrelated changes in the EEG signal that manifest over time pose a
problem for this classification scheme, because the power, and not the
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change in power is used to classify the individual trials. To counter this
problem, a pre-trial baseline is often used in neuroscientific experiments;
for example, the trial power spectrum is often divided by the power spec-
trum obtained from a pre-trial baseline to study the ERD. Surprisingly,
baselining is rarely used for BCIs, one exception being [38] where it did in-
deed result in a performance improvement. In this chapter we propose a
new feature domain for ERD classification that uses a multi-variate pre-trial
baseline to reduce the covariance between the EEG channels. Before we de-
scribe our baselining approach in more detail, we will re-introduce the CSP
pipeline that serves as a control in this work.

3.2.1 CSP classification

The CSP algorithm [34, 51]was designed to find a set of m spatial filters that
have a maximally different mean variance (band power) for two classes:

ΣW X = I (3.1)

ΣW X+ =D, (3.2)

whereΣW X is the channel covariance of the band-pass filtered EEG signal X
multiplied by the spatial filter matrix W , X+ is the EEG signal generated dur-
ing one specific task, I is the identity matrix and D is a diagonal matrix. The
CSP transform can be decomposed into an unsupervised whitening trans-
form to satisfy (3.1), and a class-specific (supervised) linear transformation
to satisfy (3.2). Usually the m = 6 filters corresponding to the m

2
smallest

and largest eigenvalues in D are used for classification, as extreme eigen-
values represent projections with the greatest mean difference in variance.

After projecting a trial to this m ×n space, the logarithm of the variance
of these m projections is typically used as a feature to automatically train
a linear classifier. The combination of the feature extraction and a trained
classifier results in the follow classification function:

f (X (i ), ~w , W ) =
∑

m

wm log
�

�

ΣW X (i )
�

m ,m

�

+w0 (3.3)

with bias w0, feature weights ~w , the m spatial filters W , and trial i ’s band-
pass filtered signals X (i ). The variance of the projections is expressed with
the diagonal of the covariance matrix diag(Σ). Traditionally, the logarithm
is used to convert the band-power features to an approximately normal dis-
tribution as assumed by linear discriminant analysis (LDA) classifiers, but
the logarithm is not strictly necessary for classification.
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3.2.2 Direct covariance classification

If we reformulate (3.3) to work in the channel covariance (ΣX (i )) space and
drop the logarithm:

f (ΣX (i ), ~w , W ) =
∑

m

wm

�

WΣX (i )W
T
�

m ,m
+w0, (3.4)

we can see that f (ΣX (i )) is just a linear transformation of the vectorized (flat-
tened) trial covariance matrix denoted by vec

�

ΣX (i )
�

:

f (ΣX (i ), ~w , W ) =
∑

m

~wm

�

Wm ,·ΣX (i )(Wm ,·)T
�

+w0 (3.5)

=
∑

�

W T diag ( ~w )W
�

◦ΣX (i )+w0 (3.6)

= ~u T vec
�

ΣX (i )
�

+w0, (3.7)

where ◦ is the Hadamard (element wise) product, Wm ,· is the m-th row of W ,
and diag ( ~w ) is a diagonal matrix containing the values of ~w on its diagonal.
The combination of the spatial filters and the band-power feature weights

~u = vec
�

W T diag ( ~w )W
�

(3.8)

can thus be modeled directly with a regularized linear classifier [20]. This
simplification enables the classifier to learn spatial filters simultaneously
with the projection’s variance weighting in a single, supervised learning
step.

For direct covariance classification, we have chosen to explicitly decor-
relate the channels with a symmetric whitening transform P that is esti-
mated on the training trials to satisfy (3.1):

P =Σ
− 1

2
X =UΛ−

1
2 U T with UΛU T =ΣX , (3.9)

and only learn the rotational spatial filters and their associated weights im-
plicitly as in (3.7) with a linear support vector machine (SVM). Without this
whitening transform, the SVM’s `2 regulariser strongly biasses the classifier
to focus on high-powered sources that are probably not originating form
the brain.

In summary, we used the covariance of whitened trials as features to
directly train a linear classifier that is, except for the log transform, almost
equivalent to the commonly used CSP pipeline.

3.2.3 Covariance classification with a second order-baseline

Likewise, the proposed second-order baseline (SOB) method learns the spa-
tial filters implicitly, but instead of the static whitening transform (3.9) a
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pre-trial baseline is used to adaptively normalize ongoing second order co-
variance statistics.

We estimated a whitening transform P(i ) for each trial i based on past
pre-trial baselines, and applied this transform to the data of the trial itself.
Without a change in brain activity, the covariance during normalized trial
P(i )X (i ) would approximate the identity matrix, even during (slow) sensor
covariance changes. But when the coupling between or the power in cer-
tain brain regions changes, a perturbation appears in the sensor covariance
during the normalized trial. This perturbation can be used for classifica-
tion. The specific whitening transform (3.9) has the crucial property that
it removes correlations, but at the same time minimizes the distorting to
preserve the relation between projections and locations on the scalp. This
preserves the task-relevant topography, which is needed to have consistent
features over time and over subjects. A similar normalization procedure was
outlined in [66] to adapt the session covariance matrix in order to reduce the
influence of non-stationarities. The main differences between our method
and [66] is that in our method each trial is normalized differently based on
the pre-trial baseline, and that this baseline period is used to estimate the
resting state covariance instead of the global session covariance.

Estimating the symmetrical whitening transform from the pre-trial
baseline covariance ΣB (i ) for trial i is difficult, since there is a large num-
ber of parameters to estimate from a few independent samples for the s
sensors. To improve the robustness, we used the regularized Ledoit-Wolf
covariance estimator [40], and used an exponentially weighted moving av-
erage (EMWA) to combine the baseline covariance of past trials into a co-
variance estimate ΣB (i ) for the baseline of trial i :

Σ̂B (i ) =αS∗B (i )+(1−α)Σ̂B (i−1), (3.10)

where S∗B (i ) is the Ledoit-Wolf covariance estimate of the baseline before trial
i , and α is known as the forgetting factor that determines the rate of adap-
tation. With

α= 1− n
Æ

1
2

(3.11)

the forgetting factor α is then associated with a decay that halves in n trials.
Specifically, we calculate a whitening transform P(i ) for each of the tri-

als X (i ) based on Σ̂B (i ), and apply this P(i ) to the Ledoit-Wolf covariance
estimate of the current trial S∗X (i ):

˜X (i ) = P(i )S∗X (i )P(i )
T with P(i ) = Σ

− 1
2

B (i ). (3.12)

The new features vec
�

˜X (i )
�

are more robust against time and subject re-
lated variations, but are still sensitive to task-related (co)variance changes.
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3.2.4 Dataset

To evaluate the performance of the invariant features we used the move-
ment imagery dataset2 from the experiment described in [59] contributed
to Physiobank [25]. This dataset contains sessions of 109 different subjects
with trials for actual and imagined movement [58]. The EEG was recorded
with 64 electrodes positioned spread over the scalp according to the inter-
national 10-10 system, sampled at 160 Hz.

We have chosen to use the blocks where the subjects had to imagine
either movement of both feet or movement with both hands, as a pre-
liminary experiment indicated that BCI classification performance above
chance level can be obtained with small training sets. There are about 22
trial per class for each subject.

3.2.5 Preprocessing

To preprocess the data, we applied a 6th-order Butterworth notch filter at
60 Hz, applied a 6th-order Butterworth filter between 8–30 Hz and extracted
trials for movement imagery of both hands or of both feet in the interval
from [−2, 4] s after the stimulus. All evaluated methods used the same in-
terval [0.5, 4] s after the stimulus presentation for classification. For the SOB
method, the interval [−2, 0] s was used to estimate the pre-trial baseline.
The same preprocessing was used for all BCI classifiers.

3.2.6 Evaluation

We used two CSP-based pipelines and a log band-power (logBP) based
pipeline as a comparison method in both an SD and an SI BCI classifica-
tion scheme. One CSP pipeline was based on CSP projected log band-power
features classified with an LDA, the other CSP classifiers used band-power
features without the log transform, classified with a linear soft-margin SVM
[15]. The logBP classifiers simply used the variance of each band-pass fil-
tered channel as a feature for a linear SVM. The whitened covariance fea-
tures and SOB normalized covariance features were also classified with a
linear SVM. The SVM’s c -parameter was always estimated using a sequen-
tial (chronological) 5-fold cross-validation procedure with a logarithmic
step size for the c -values, on the training set.

To evaluate these classifiers in an SD context, the first half of the session
was used for training, and the second half was used for evaluation. This

2http://www.physionet.org/pn4/eegmmidb/

http://www.physionet.org/pn4/eegmmidb/
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Table 3.1: The subject-dependent accuracy of the different pipelines on the
last 22 trials of each session for the 51 test subjects.

Pipeline Half life Mean (std.) Median

logBP SVM 62.2 (11.5) 63.6
CSP logvar LDA 69.5 (14.6) 68.2
CSP var SVM 68.6 (15.0) 68.2
whcov SVM 68.9 (15.2) 72.7
SOB cov SVM (best) 13.8 trials 67.1 (13.3) 68.2
SOB cov SVM (worst) 1 trial 64.8 (13.1) 63.6

simulates a calibration and application session, respectively. Chronologi-
cal separation of training and test set is needed since random splits lead
to overly optimistic performance estimates. As the dataset also contains
blocks with other mental tasks, we have only about 22 trials in total for train-
ing and 22 trials for evaluation per subject.

The performance of SI application was assessed by training an SI clas-
sifier on the first 50 users, and then applying the classifier to the test set
formed from the remaining 51 subjects (we removed 8 subjects from the
test pool because they had fewer trials). The final SI performance was cal-
culated on the second half of the predictions for these 51 test subjects to
allow for a paired comparison with the SD classifiers.

3.3 Results

3.3.1 Subject-dependent classification

The performance of the various control features is shown in Table 3.1, as
well as the performance on the newly proposed SOB covariance features.
For subject-dependent (SD) classification, the LDA classification of CSP log-
variance features had the highest mean accuracy. However, there was no
significant difference between the performance of this CSP pipeline and di-
rect covariance classification (whcov SVM), and the latter had a higher me-
dian performance (72.7% accuracy). This demonstrates the feasibility of di-
rect covariance classification. The logBP features performed much worse
than the spatially filtered alternatives. The SOB features worked almost as
well as the CSP features when low α-values were used; with faster adaption
rates the SOB did not perform as well with SD application.
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Table 3.2: The subject-independent accuracy of the different pipelines on the
last 22 trials of each session for the 51 test subjects.

Pipeline Half life Mean (std.) Median

logBP SVM 58.1 (11.1) 54.5
CSP logvar LDA 59.3 (11.8) 54.5
CSP var SVM 56.4 (9.7) 54.5
whcov SVM 59.1 (10.8) 54.5
SOB cov SVM (best) 4.0 trials 67.3 (13.4) 68.2
SOB cov SVM (worst) 18.9 trials 64.9 (13.0) 63.6
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Figure 3.1: The accuracy of a subject-dependent CSP pipeline versus the per-
formance of a subject-independent SOB pipeline. There is no significant dif-
ference between the classifiers, despite the fact that the SOB pipeline was not
trained on the subject.
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Figure 3.2: The mean SI accuracy of the SOB as a function of the half-life of
the baseline estimate ΣB (i ) of the predictions on the last 22 trials of all the 59
test subjects.

3.3.2 Subject-independent classification

The performance of the various control methods severely degraded due
to inter-subject variability (Table 3.2) when these classifiers were applied
in a subject-independent (SI) fashion. The CSP based classifiers, which
did outperform the naive logBP classifier with subject-dependent training,
now performed at the same level as logBP classifier with SI application —
the advantage that spatial filtering provided in the SD training disappeared
with SI application. The performance of the SOB based predictions how-
ever, was not affected at all. The accuracy of the best subject-independent
SOB-based predictions was not even significantly different from the best
subject-dependent (CSP log-variance LDA based) predictions (p=0.16 with
a Wilcoxon signed-rank test on 51 paired observations, see Fig. 3.1).

The best SI performance was obtained with a volatile baseline with a half
life of 4 trials, while with SD application the best results were obtained with
long half lives (low α’s). Note that even the worst performing SOB classifier
outperformed all of the control classifiers. Fig. 3.2 displays the fraction of
correctly classified trials as a function of the amount of smoothing of the
pre-trial baseline covariance. The best performance was obtained with a
baseline half-life between 2–11 trials.

The most contributing spatial filters that were learned implicitly by the
SI SOB covariance classifier are shown in Fig. 3.3. These filters can be easily
extracted with an eigenvalue decomposition of the covariance matrix, see
(3.6). The most relevant features originated from the motor cortex region,
but also occipital and central parietal features contributed to the classifiers
predictions. There was no apparent contribution of muscle or eye move-
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Figure 3.3: The most influential spatial filters Wi ,· for the best SI SOB classi-
fier scaled by the magnitude of their weight w i . The number above the plot
is the weight w i (i.e. a positive sign indicates filters with a response that cor-
responds to imagery of foot movement, a negative sign indicates imagined
hand movement). Most of the contribution seems to originate from the mo-
tor areas, the central parietal regions and the visual cortex.

ment artifacts to the classification.

3.4 Discussion

The results indicate that the new second-order baseline covariance features
provide a robust alternative to CSP features for classification of motor im-
agery, and generalize to new, unseen subjects without additional calibration
or training. Apparently, the normalization performed with the SOB removes
enough inter-subject variability to generalize to new subjects. However, the
dataset used in this research contains rather few trials, hence the SD CSP
performance might have suffered from insufficient training data. Never-
theless, recording more trials is not always an option, and the SD perfor-
mance obtained in our study is similar to scores presented in [23] where
much longer sessions were used. Further, when a similar SD CSP pipeline
with a broadband spectral filter was applied to naive (i.e. users that have
not used a BCI before) users in [6], the results were barely above chance al-
though 280 trials were available for evaluation. The performance increased
dramatically though when subject-specific spectral filters were used.

The SOB’s α parameter seems of some importance for generalization
over subjects. While for SD classification a long half-life was preferred, α’s
with a short half-life were preferred for SI classification. Presumably, slow
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adaptation is preferred for SD classification because it allows the classifier
to model and exploit session-specific variations, such as for example bad
channels and EEG artifacts. For SI classifications modeling these variations
is generally not helpful as they are not consistent over subjects. Shorter half-
lives reduce these variations, and are thus preferred for SI classification.

It is noteworthy to mention that the best α-value for SOB-covariance
features was selected based on the performance on the test subjects. This
might slightly overestimate the true performance. Usually these hyper-
parameters (e.g. the SVM’s c -parameter) are set based on performance es-
timates obtained with cross-validation. The half-life constant α could be
chosen with cross-validation, but since the SOB is a preprocessing method
this is often computationally impractical. Since current BCI pipelines have
several preprocessing hyper-parameters that are fixed a priori (e.g. the cut-
off values in the band-pass filter, or the m = 6 spatial filters), we can imag-
ine that a fixed α can be used as well. Given that even the worst α performs
better than the alternatives in SI classification, the performance gain seems
fairly robust for a wide range ofα-values (Fig. 3.2). Therefore, we expect that
choosing α= 0.16 (a half-life of 4 trials) a priori will be adequate in practice.
This value is probably independent of the mental task used.

3.5 Conclusions and future work

We have presented an SOB procedure that reduces inter-subject and inter-
session variability, and demonstrated that SOB-covariance features allow
for cross-subject motor imagery classification without a loss of perfor-
mance compared to within-subject classification with the popular CSP
based BCI classifier. The advantage of the SOB based covariance features
is that they are robust against inter-session and inter-subject variation, and
that standard classifiers such as the SVM can be used without the need of
any adaptation or post-processing of the outputs (e.g. bias-adaptation).
Furthermore, the online processing is simplified as it can be implemented
as a stateless, fixed pipeline that does not handle the incoming data differ-
ently during a calibration session.

In addition to the practical advantages of removing the need for the la-
borious calibration sessions, changing from subject-dependent to subject-
independent BCIs also simplifies multi-disciplinary BCI research. It al-
lows researchers to work with validated BCI classifiers that are known to
work with a certain probability on the target population, and focusses on
the intended brain regions. The development of subject-independent BCIs
can facilitate new applications for which collecting enough subject-specific
training data before each session is not feasible, such as for example fatigue
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detection, screening of neurological disorders or classification of emotional
states.

The method described uses a single, broad frequency band. For future
work, the features can be extended to include multiple frequency bands as
in [41, 20]. Work with naive BCI has shown that subject-specific frequency
bands can dramatically improve performance [6].

Another interesting research direction is to generalize to recordings with
different electrode layouts. As the learned covariance weights were quite
sparse, the correspondence of a few key sensor locations might be enough
to generalize to new sensor configurations. This sparsity in covariance
space seems to suggest that it is more natural to think in covariance (or co-
herence) between brain regions, than to think of power in spatially filtered
sources. The second row in Figure 3.3 shows spatial filters with a dipolar
structure on the motor cortices. The combination of these and many more
filters is needed to isolate a specific covariance pair — that is, the intriguing
dipolar structure is probably residue caused by the decomposition of the
weight matrix.

Finally, although the method presented works causally, it should be val-
idated in an online experiment with a user in the loop.
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Chapter 4

An SVM for structured errors

NON-STATIONARY feature distributions violate the basic assumption made
by most ML methods that the data is independent and identically dis-

tributed (iid). In Chapter 3, we demonstrated for the first time that cross-
subject EEG classification is possible by making the training set’s and test
set’s distribution similar with a normalization procedure. But this nor-
malization procedure does not result in a performance gain with subject-
dependent (SD) application (i.e. the usual scenario where a calibration ses-
sion is used before application). This is consistent with prior work on non-
stationary signals in BCIs that attempts to reduce feature variability over
time [28, 66, 5, 72, 44, 53] or alternatively to adapt the classifier’s parameters
to the changing distribution [62, 70], where at best modest improvements
are reported.

It is unclear to what degree variability in the feature distributions influ-
ences the SD BCI, since the variable features might be irrelevant to the spe-
cific classification problem. The stationary subspace analysis (SSA) method
[72, 44] hinges on this assumption. But even if this assumption holds, at-
tempting to remove the irrelevant variability could introduce residual noise.
As a consequence the performance could suffer, while a robust classifier
might have been able to learn these variations in the data in the first place.
This may be the reason why most of the aforementioned studies have been
demonstrated on datasets that were artificially augmented with strong non-
stationary distributions, or had to include additional data or labels to learn
from.

All these proposed methods focus on assuring that the features are iden-
tically distributed during training and testing. Still, being identically dis-
tributed does not imply that the samples are independent of each other.

41
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The dependence of trials over time, which can be caused for example by
inertia of neural processes or by filtering artifacts (or even the SOB proce-
dure), can result in prediction errors that are dependent in time. If the clas-
sifier observes a series of dependent errors that are caused by a single (hid-
den) event, and assumes that these errors are unrelated, this can severely
bias the classifier and lead to overfitting. Incorporating a priori known de-
pendencies in the model thus enables the classifier to reduce the penalty
for related errors (e.g. caused by a period of distraction of the user) and to
focus on structural errors present in the data.

In this Chapter, we focus on the violation of the independence aspect of
the iid assumption. Instead of attempting to remove dependencies in the
feature space as done in previous work, we modeled the dependencies in
the objective function of the classifier. Specifically, we present a general-
ization of the SVM that uses latent slack variables to model the structure
of misclassified training instances. By penalizing these latent slack vari-
ables, the dependent-samples support vector machine (dSVM) was able to
diminish the influence of related errors and to reduce overfitting. The dSVM
was evaluated on real BCI datasets, and showed an improvement in perfor-
mance.

4.1 Previous work

The iid assumption is ubiquitous in machine learning and statistics. When
using real data, the ubiquitous iid assumption of the training examples can
be, and often is violated. For example, when samples are drawn from differ-
ent subjects, it is to be expected that samples drawn from the same subject
display similar (subject specific) variability, in other words, the uncertainty
of the observations decreases if the subject is known. The implications of
classifying such non-iid data has received surprisingly little attention from
the ML community. Methods that deal with conditionally iid (i.e. for each
label yi , the corresponding instance ~x i is generated according to some fixed
probability distribution P(~x i |yi )) data do exist, such as for example hidden
Markov models (HMMs) and conditional random fields (CRFs). These mod-
els allow for structure between the labels. Methods for non-stationary data
with direct dependencies between the observations ~x i have received con-
siderably less attention. With BCI data, it is safe to assume that the labels
are (relatively) independent. The features derived from the EEG however
do display temporal structure, and sessions (or users) can be considered as
groups with different feature distributions.

A dependence over time is common in time series. This implies that
when doing prediction on a time series, knowing the error term of one data
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point is informative of the error of the next. With this knowledge, better
models for time series can be built. This dependency is known as serial cor-
relation in the field of econometrics, and is known to bias the standard er-
ror of uncorrected regression coefficients to be biased downwards (overfit-
ting). Various methods do exist to estimate the first-order serial correlation
coefficient ρ for consecutive error terms such as the iterative Cochrane-
Orcutt procedure or a grid-search method that minimizes the standard er-
ror (Hildreth-Lu method) [49]. For linear regressors, a second set of regres-
sors based on lagged error terms can be used to correct the problem (feasi-
ble generalized least squares).

In statistics, there are methods that model the dependencies within
groups of measurements. These so-called mixed-effect models separately
model the contribution of different users (known as fixed-effects) and the
contribution of random-effects. An example of the application of mixed-
effect models to inter-subject variability in BCIs can be found in [24]. Since
these mixed-effect methods are aimed at explanatory analyses, they rely on
estimating statistics for every group (user). While this improves the under-
standing of the classification problem, they generally do not allow for pre-
diction of out-of-sample users since the fixed-effects of this user still need to
be estimated. The SOB procedure presented in Chapter 3 can be regarded as
mixed-effects model, since the adaptive whitener models and subtracts the
fixed effects. The difference is that the SOB quickly re-estimates the fixed
effects model for prediction.

The structure of prediction errors implies that not only the sum of the
errors, but also the distribution of the errors should be taken into account in
the optimization of the classifier, since related errors might lead to overfit-
ting [49]. One approach to bias the classifier towards certain distributions
of errors is the quadratic-loss Y-SVM (QLYSVM) [50]. The QLYSVM uses a
quadratic penalty for pairs for margin errors, and optimizes

arg min
~w ,b ,ξ

1

2
‖ ~w ‖2+ c ~ξT Y SY ~ξ (4.1)

s.t. yi

�

~w T ~x i +b
�

+ ~ξi ≥ 1 (4.2)

~ξi ≥ 0, (4.3)

where ~x i is the feature vector for instance i , Y is a matrix with the target la-
bels yi ∈ {−1, 1} on its diagonal, ~ξ is a vector with a positive slack variable for
each training instance that allow support vectors to penetrate the margin at
a cost, and S is a symmetric positive-definite matrix that determines the cost
of pairs of margin errors. The dual of this QLYSVM can be solved by adding

1
2c

S−1 to the kernel matrix K and solving the hard-margin SVM’s dual. When
S is a diagonal matrix, the QLYSVM degenerates to the quadratic loss SVM.
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Unfortunately, the QLYSVM cannot be used to exploit the decreasing de-
pendence with time: to reduce the weight of a temporary disturbance, the
cost of misclassifying two highly dependent instances should be less than
the cost of misclassifying two more independent instances. The resulting
cost matrix S is not positive definite, which prevents optimization of the
QLYSVM’s dual. Furthermore, the inversion of S is expensive, and might
suffer from numerical inaccuracies depending on the kernel function used
to construct S.

4.2 The dependent-samples SVM

Given training examples {~x i } and corresponding labels ~yi ∈ {−1, 1}, the
dSVM can be formulated as the following constrained, convex optimization
problem:

arg min
~w ,b ,ξ

1

2
‖ ~w ‖2+ c

∑

i

~ξi (4.4)

s.t. yi

�

~w Tφ(~x i )+b
�

+D~ξi ≥ 1 (4.5)

~ξi ≥ 0, (4.6)

where ~w is the classifier’s weight vector and b is the bias term. The function
φ(·) maps examples from input space to a feature space. The c parameter
determines the cost of penetrating the SVM’s margin (margin errors); ~ξi is
a positive, latent slack-variable that accommodates for these margin errors,
and is related to a specific example i through (D~ξ)i . When D is the identity
matrix I , each slack variable ~ξi is linked to a single instance i of the training
set, and the dSVM degenerates to the traditional soft-margin SVM [15]. The
columns Di ,· contain the non-negative dispersion function for a specific la-
tent error ~ξi that needs to be specified a priori.

For ease of notation, we write this in matrix form with Yi ,i = ~yi and X ·,i =
φ(x i ):

arg min
~w ,b ,~ξ

1

2
‖ ~w ‖2+ c ~ξT~1 (4.7)

s.t. Y
�

~w T X +b
�T
+D~ξ−1� 0 (4.8)

~ξ� 0. (4.9)

With the Lagrange multipliers ~α and ~γ, the constraints can be put in the
primal objective functionLp that needs to be minimized for ~w and b , and
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maximized for the dual variables ~α and ~γ:

Lp ( ~w ,b ,~ξ,~α,~γ) =
1

2
~w T ~w + c ~ξT~1− ~αT

�

Y X T ~w +b~y +D~ξ−~1
�

−~γT ~ξ (4.10)

s.t. ~α� 0 and ~γ� 0, (4.11)

Setting the derivative of the primal variables ~w , b and ~ξ to zero yields their
minimum,

δ

δ ~w
Lp = ~w T − ~αT Y X X = 0 ⇒ ~w =X Y ~α (4.12)

δ

δb
Lp =−~αT ~y = 0 ⇒ ~αT ~y = 0 (4.13)

δ

δ~ξ
Lp = c~1T − ~αT D −~γT = 0 ⇒ c~1T = ~αT D +~γT , (4.14)

that result in the dualLd after substitution:

Ld (~α) = ~αT~1−
1

2
~αT Y K Y ~α, (4.15)

where the kernel matrix K i ,j =φ(~x i )Tφ( ~x j ). The dualLd needs to be max-
imized with respect to the dual variables ~α, subject to the Karush–Kuhn–
Tucker (KKT) conditions (4.13), (4.14) and (4.11):

arg max
~α

Ld =~αT~1−
1

2
~αT Y K Y ~α (4.16)

s.t. 0� ~αT D � c , ~αT ~y = 0. (4.17)

The only difference of this dual with the soft-margin SVM’s dual is the ap-
pearance of the dispersion matrix D in the constraint (4.17); with D = I the
dual degenerates to the soft-margin SVM’s dual. The dSVM’s dual (4.16) and
constraints (4.17) form a quadratic programming (QP) problem, and an op-
timal ~α can be found with a standard QP solver. With ~α found, ~w is defined
through (4.12).

The bias b is usually calculated from support vectors on the boundary
of the margin using (4.8) in the traditional soft-margin SVM formulation,
i.e. from the x i where ~αi > 0 and (I ~ξ)i = 0. With the dSVM, this defini-
tion of unconstrained support vectors is troublesome, since the latent slack
variables are associated with multiple (possibly all) support vectors through
D. Therefore, we have chosen to use an implicit, regularized bias instead,
which can be implemented by either adding a constant feature, or by using
an inhomogeneous kernel. To remove the bias term, the constraint (4.13)
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has to be removed, resulting in

arg min
~α

Ld =
1

2
~αT Y K Y ~α−~1T ~α (4.18)

s.t. 0� ~αT D � c , (4.19)

which is still a standard QP problem.
Classification with the dSVM is done as with the SVM, using (4.12) and

(4.8), with b = 0:

f (X2) = ~w T X2+b = ~αT Y X T X2 = ~αT Y K2. (4.20)

The main difference between the dSVM and the traditional soft-margin
SVM is that dSVM has groups of support vectors that share a “support bud-
get”, whereas the former has a budget per support vector. In addition, the
dispersion matrix D has to be specified a priori based on domain knowl-
edge (e.g. for time series classification with a sliding window, the depen-
dence is apparent from the feature construction). The dispersion functions
(columns of D) do not have to be the same function with an offset. For ex-
ample, when combining the data of multiple subjects, the D matrix could
model a dependency of all trials (instances) on a subject, and a dependency
on trials of the same subject near in time. This would allow the dSVM to re-
move subjects that do not display the expected brain signal altogether from
the training set, while still spending modeling power on an as diverse set of
subjects as possible.

4.3 Validation

To validate the dSVM introduced in the previous section, we constructed an
artificial dataset to demonstrate the dSVM’s robustness against dependent
disturbances. After demonstrating the dSVM on this artificial dataset, we
will present the evaluation of the dSVM on a real BCI dataset.

4.3.1 Artificial data

The dataset was constructed by sampling from two Gaussian distributions
with equal covariance but different means. A non-stationary perturbation
in feature space was generated with the Laplace distribution function

f (x |µ,b ) =
1

2b
e−

|x−µ|
b , (4.21)
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t=1..55 t=56..110 t=111..165 t=166..220

Figure 4.1: Sequential snapshots of the artificial dataset used to evaluate the
dSVM. The data is sampled form two Gaussian distributions with different
means but equal covariance. In the second frame, we introduce a latent error,
that leaks to a range of related of samples.

with b = 9 and µ = 60, where the argument x is the position in the dataset.
This makes the instances non-iid (see Figure 4.1), with a known dispersion
function.

A Laplace distribution was chosen based on its similarity to the empir-
ical distribution found in a preliminary experiment, in which we modeled
the interdependence of slack variables in the training set of a BCI exper-
iment. As the strongest dependence in this preliminary experiment was
found between slack variables of the same class, the perturbation was lim-
ited to one class only.

Both a soft-margin SVM and a dSVM were trained on this artificially con-
structed dataset. Model selection for the cost parameter c was performed
with a line search on cross-validated accuracy with four sequential subsets
corresponding to the frames in Figure 4.1. The dSVM’s dispersion matrix D
was constructed using (4.21):

D̃i ,j =

(

~g i · f (|~t i −~t j |) if ~yi = ~y j ,

0 otherwise
(4.22)

where ~t i is the time offset of an instance, and ~g chosen such that the
columns of D are normalized to one.

The resulting margins and hyperplanes are displayed in Figure 4.2. It
can be seen that the soft-margin SVM was sensitive to the outliers produced
by our non-stationary perturbation, with the result that the hyperplane was
almost orthogonal to the hyperplane that would separate the two Gaussian
distributions. In contrast, the dSVM was able to exploit the known depen-
dence between the training instances, and separated the two Gaussian dis-
tributions correctly in the presence of the perturbation. This demonstrates
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Figure 4.2: The hyperplane (thick black line) and margin (between the thin
black lines) for the standard soft-margin SVM (left) and the dSVM (right).
Both classifiers were trained on the artificial data displayed in Figure 4.1. The
two classes are indicated with white and black dots respectively, red edges in-
dicate the support vectors. While the dependent outliers displace the hyper-
plane of the standard SVM, the dSVM is able to reduce the weight of these
points based on their relatedness.
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how the dSVM can use dependency information to avoid overfitting if the
training data is non-iid.

4.3.2 BCI data

Description of the datasets A suitable BCI corpus was selected based on
a preliminary screening, based on its large interdependence of classifica-
tion errors close in time. This corpus contains EEG signals for 12 subjects,
recorded during 30 minutes of natural game play, synchronized with an-
notations of key presses. The game was designed to evoke changes in the
mental state by periodically ignoring 15% of the keyboard input. Please re-
fer to Chapter 2 for experimental details. Due to the unconstrained nature
of this game, the key strokes follow each other rather quickly. While this
dataset satisfies the non-iid assumption of the dSVM, the disadvantage of
this dataset is that the short trials might make the task-related signals unde-
tectable, as the recommended inter-trial interval (ITI) for the motor related
ERD is at least 10 sec [48].

A BioSemi ActiveTwo EEG system was used to record 32 channels of EEG
and physiological signals at a sampling rate of 512 Hz. The 32 Ag/AgCl ac-
tive electrodes were placed at locations of the Extended International 10-20
system. To measure the influence of ocular and muscle artifacts, EOG (hor-
izontal and vertical pairs) and two pairs of EMG signals over the left and
right flexor digitorum profundus (the muscles used to press with the index
finger) were recorded.

For this chapter, the recordings were preprocessed as follows: first the
recording was downsampled to 128 Hz to speed up processing. After down-
sampling, the data was high-pass filtered using a 4th-order Butterworth
filter to remove frequencies below 0.2 Hz, and notch-filtered using a 4th-
order Butterworth filter from 49–51 Hz to remove power line noise. The EEG
was then corrected for eye movements using a regression based subtraction
method [61].

Feature extraction After preprocessing, the signals were filtered with a
6th-order Butterworth bandpass filter with a passband of 8–30 Hz, win-
dows of 1 sec centered on the moment the key-press was registered were
extracted, and the Ledoit-Wolf covariance estimator [40] was used to es-
timate the channel-covariance in the trial window. Finally, a symmetrical
whitening transform P =Σ−

1
2 based on the mean channel covariance matrix

Σ was calculated on the training set, and applied to all trials. The resulting
32×32 features were vectorized and used for classification. This pipeline is
conceptually similar to the popular CSP based [34, 51] classification of ERD
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Figure 4.3: An color-coded example dispersion matrix D for the first 100 tri-
als of subject S0. The used dependence function is a Laplace distribution with
width b = 2 for trials of the same class. The green diagonal entries around
trial 20 indicate independent trials, while the pattern around trial 60 indi-
cates a closely packed group of trials that are interdependent.

related to movement imagery, but it delegates learning of the spatial filters
to the classifier.

Performance evaluation For BCI data it is expected that the iid data as-
sumption does not hold, as there are non-stationary perturbations in the
data. This complicates the evaluation procedure as one cannot simply use
cross-validation when the trials (instances) are inter-dependent. We opted
for a simulation approach, in which we used the first 800 trials for training,
used the performance on the following 400 trials for model selection, and
used the remaining≈ 800 trials as the test set. Nevertheless, non-stationary
perturbations could be present in the validation and test set, and could
skew the results, as the performance is measured based on the iid assump-
tion. To improve the robustness of the performance measure, both the val-
idation and test sets were split into five continuous parts, and the median
of the performance on each part was used. As a measure of performance
we chose to use the information transfer rate (ITR) based on mutual in-
formation (MI) between the predictions and the true class labels, which is
an information-theoretic measure of the communication speed through an
unreliable communication channel (the BCI). The advantage of ITR over,
for example, accuracy is that it takes both the quality of the prediction and
the speed of communication into account.
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Table 4.1: The ITR for the SVM and dSVM classifiers. ITRs below 1 bit/min
have been removed for clarity.

Subject SVM bits/min dSVM bits/min b-param

S0 5.26 6.38 1.3
S1 − − 0.01
S2 − − 8.9
S3 − − 0.48
S4 − 1.02 0.11
S5 11.9 11.2 0.11
S6 − − 5.5
S7 − − 38
S8 − − 8.9
S9 13.8 18.0 0.3

S10 2.58 5.1 1.3
S11 − − 2.1

1e-05 0.0021 1.6 1.3e+03 1e+06

c

0.01

0.07

0.78

8.9

1e+02

b
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Figure 4.4: The ITR on the test set of S9 for different combinations of the cost
parameter c and dispersion parameter b . The top row has such a small b that
the dSVM degenerates in the traditional SVM. The optimal spread appears to
be b = 0.3, which indicates that modeling the inter-dependency of trials is
beneficial for this subject.
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Results On the training and validation set, we performed a grid-search
with the soft-margin SVMs and the dSVMs with different cost parameters c ,
and different width parameters b in (4.22) for the dSVM (see Figure 4.3 for
an example of the resulting D) with a linear, inhomogeneous kernel. The
offset parameter µ in (4.22) was set to zero. The performance of the se-
lected SVM and dSVM classifiers are presented in Table 4.1. Unfortunately,
for a number of subjects no well-performing classifier could be trained with
either classifier. For the subjects for which a classifier could be trained, the
dSVM seems to outperform the standard soft-margin SVM, with S5 being
the only (minor) exception. The best subject displays a dramatic improve-
ment in performance, from 13.8 to 18.0 bits per minute (see Figure 4.4).

4.4 Discussion

The results on the artificial dataset and on the real BCI datasets indicate that
modeling the inter-dependency of training instances can improve the clas-
sification performance. On the BCI dataset, we have quite a few subjects for
which the classifiers perform at chance level. This is, however, a property
of the dataset, and not a limitation of the dSVM. For the subjects that had
classifiable brain signals, the performance improved in general. Particularly
promising is the observation that the best performing subject displayed the
biggest improvement in performance. The question remains how this re-
sult would generalize to more traditional BCI datasets that are more easily
classified, and generally have much smaller training sets.

We demonstrated that the modeling the interdependence of the training
data can be helpful. Other methods that attempt to constrain the undesir-
able influence of non-stationary feature distributions have focused mainly
on the changes in the distribution. The dSVM and these methods are com-
plementary; to assess their efficacy they should be evaluated in combina-
tion, since features for BCI data probably violates both the independence
and the identically distributed assumption.

4.5 Conclusions and future work

In this chapter, we presented the dSVM, which is a generalization of the
soft-margin SVM. The dSVM is able to take the dependency of classifica-
tion errors into account. Using a real BCI dataset, we have demonstrated
the feasibility of improving the performance on an unseen test set by mod-
eling the temporal interdependence between the training instances. Since
the dSVM and SOB methods presented in Chapter 3 are complementary,
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they should be evaluated in combination. Correcting for the iid assumption
might finally give a estimate of the magnitude of the problems caused by
non-stationary feature distributions in BCI.

For continuous classification of EEG signals, features extracted with a
sliding window might form a natural candidate for the dSVM. When the in-
terdependence is less clear, it might be possible to learn the dependence
function from the data. A naive method would be to iteratively re-estimate
the covariance of margin errors. Including the estimation of this depen-
dency function in the optimization criterion is an interesting direction for
future research. We have taken the first steps in this direction in a logistic
regression framework.

An open problem is how the performance on non-iid datasets should be
assessed. We have chosen for the simple approach of using a robust statistic
on multiple estimates. For future work, a well-founded, reliable method
needs to be devised.
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Chapter 5

Conclusions

IN this chapter, we will summarize the contributions of the last three chap-
ters. Drawbacks and merits of the proposed methods will be discussed,

and embedded in a unified view. We will reflect on the progress we have
made towards the creation of robust brain-computer interfaces (BCIs), and
outline directions to continue improving BCIs.

5.1 Summary of contributions

In Chapter 2 we showed that the feature distributions used for BCI classifi-
cation are indeed non-stationary, and that these changes can be caused by
changes in the mental state of the user. Changes in the mental state were
induced with a modified Pacman game that caused episodes of frustration
by reducing the amount of control the user had over the Pacman charac-
ter. BCI classifiers based on spectral event-related desynchronization (ERD)
features that were trained on the episodes with full control performed sig-
nificantly better on the episodes with reduced control.

In Chapter 3 we described the second-order baseline (SOB) method that
reduces inter-session and inter-subject variability in signal feature distribu-
tions. The procedure is based on the insight that a large class of BCIs is
based on ERD which is observed by a relative change in spectral power, but
use absolute power instead for classification. An off-line experiment with
109 subjects has shown that these new features are robust enough to train a
subject-independent (SI) BCI classifier. The data of new, unseen users was
classified with an accuracy as high as conventional BCIs that, unlike our
method, do require a calibration session prior to BCI use. To the best of
our knowledge this is the first causal SI BCI classifier that works as well as

55
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subject-dependent (SD) classifiers.
In Chapter 4 we linked the problem of non-stationary feature spaces

to the violation of the basic independent and identically distributed (iid)
assumption underlying most statistics. We derived a generalization of the
well-known support vector machine (SVM) classifier, that takes the chrono-
logical dependence of features (and hence the dependence of classification
errors) into account. Both on artificial data and real BCI data, overfitting
was reduced with this dependent-samples support vector machine (dSVM),
leading to an increased information throughput for the BCI.

In Chapter 1 we outlined two key issues for BCIs. We have fully ad-
dressed the first issue of investment of time by completely removing the
need for a calibration session with the SOB based ERD features. It is
likely that this approach also allows for subject-independent classification
of other ERD based brain signatures, and even of event-related potential
(ERP) based signatures. This still has to be validated experimentally. Fu-
ture research should investigate whether the dramatic performance gains
associated with subject specific spectral filters [6] can be incorporated into
a generalized SOB method.

The second key issue of requiring predictable, dependable BCI perfor-
mance was partially addressed with the work on the dSVM. The method
demonstrates that it is feasible to model the relatedness of brain signals
recorded nearby in time. Modeling the interdependence of trials is nec-
essary to prevent overfitting when using high-dimensional features spaces
based on electroencephalography (EEG). Not assuming iid feature distri-
butions raises new questions regarding performance evaluations though.
Nevertheless, we have taken the first steps in handling non-stationary fea-
ture distributions from a new angle, which has provided the valuable insight
that structured errors can indeed lead to overfitting.

With the two new methods presented in this dissertation, we have paved
the way for a next generation of BCIs — BCIs that work dependably, without
the need of recalibration .

5.2 Discussion

The influence of non-stationary feature distributions on BCI performance
is often described as severe, and one easily gets the impression that the ef-
fects of the ever varying EEG is the cause of the sometimes disappointing
accuracy of BCI systems. While it is difficult to get a clear estimate of the
impact these fluctuations in feature distributions on the classification per-
formance (because most variability is irrelevant for classification, and an
upper limit of the performance is unknown), the results in Chapter 2 show
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that the difference in performance caused by different mental states is very
modest, despite the fact that changes in the mental state were strongly in-
duced. Furthermore, the trials sampled from deviating ERD feature distri-
bution were classified significantly better, contrary to what one would ex-
pect. These results, combined with fact that the SOB did not result in an ex-
pected performance increase for within subject classification, indicate that
the direct influence of changing feature distributions on the performance is
very weak.

This does not imply that problems caused by non-stationary feature dis-
tributions do not exist, but merely that it is not straightforward to assess the
magnitude of their influence.

The common remedy to these ill-defined non-stationarities is to adapt
the classifiers or feature spaces to track changes in the feature distributions.
Our SOB normalization procedure falls into this category. Although the
method is able to track feature changes over time, it only results in perfor-
mance gains when applied across subjects. This seems to indicate that the
feature distributions are often approximately stationary within a session.
The independence part of the iid assumption is probably what is being vio-
lated, as shown in Chapter 4.

The unsupervised BCI feature extraction in the form of covariance ma-
trices (introduced in tensor form in [20]) has some distinct advantages over
the supervised ERD feature extraction with the common spatial patterns
(CSP) algorithm. First and foremost, it prevents the stacking of supervised
methods with potentially different objective functions which can result in
the final supervised layer underestimating the noise in the training set due
to overfitting in the first supervised method (i.e. CSP). Other advantages
include that the spatial filter is learned implicitly, which simplifies multi-
class classification, and the fact that the features are extracted without class
labels opens up faster methods for cross-validation and performance mea-
sures. While the SOB procedure can be used with CSP feature extraction,
the dSVM presented in Chapter 4 critically depends on implicit learning of
the spatial filters.

An additional performance increase is to be expected when the SOB
based normalization and the dSVM with implicit learning of the spatial fil-
ters are combined. Both methods attempt to solve different aspects of the
violation of the iid assumption: the SOB reduces long-term distribution
changes, and thereby ensures that future features are almost distributed
identically to the features calculated on the training data, and the dSVM
reduces overfitting caused by violating the independence aspect of the iid
assumption. The results based on the SOB procedure presented in Chap-
ter 3 might still suffer from overfitting due to dependence of trainings trials.
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Similarly, the results presented in Chapter 4 could still suffer from changing
distributions. Despite these suboptimal conditions, both methods demon-
strate performance improvements on real BCI data.

5.3 The road ahead

With the work described in this dissertation we have made strides in the
development of robust BCI methods, with applications both to advancing
BCI research and improved reliability of BCIs applied in practice. Usually,
though, research answers fewer questions that it raises. In this section, we
will present directions to find new interesting answers based on the experi-
ence gained in the past four years.

5.3.1 A different kind of BCI research

Our subject-independent (SI) classifier presented in Chapter 3 can facilitate
the simplification of BCI research. The current practice in the BCI field is
that classifiers are trained for each subject individually. This has the draw-
back that within a single experiment a great variety of classifier models is
used; all these classifiers have to be carefully trained and inspected in order
to ensure that the right signals are used for classification. In Chapter 3 we
showed that a single model can suffice for a large subject pool, without any
loss of performance. As a result only a single set of spatial filters need to
be inspected, and more data can be used. This reduces the chance of using
subject-specific artifacts for classification.

As the SI BCI do no longer depend on a calibration session, the BCI can
be designed and fully trained before the actual experiment is performed.
Preparing a fully trained BCI has the advantage that it does not depend
on an error-prone calibration (a single artifact can severely change the re-
sulting classifier). For subjects, a pre-trained BCI has the advantage that it
rewards a predetermined model of brain signals, and not some unrelated
but class-relevant artifacts. User training might be improved by such val-
idated, targeted feedback. The separation of the sensitive training phase
and application phase could stimulate multi-disciplinary BCI research, as
fully developed BCIs can be shared with researchers from other disciplines.
For example, the BCI field would greatly benefit from contributions from
human-computer interaction (HCI) field [17], for example on the topics of
user experience, evaluation methodology and application design. The re-
quired HCI studies would become much easier with the availability of a pre-
trained, validated BCI that focusses on the intended brain regions.
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We see the transition from subject-dependent to subject-independent
models as a necessary step in the development of the field, parallel to the
developments that have taken place in speech recognition research. We
have demonstrated an SI model that discriminates types of motor imagery
within a single experimental environment using the same recording hard-
ware. The next phase is to perform discrimination independent of the
recording hardware, and independent of the specifics of the experiment for
a variety of brain signatures. Continuing the parallel with speech recogni-
tion, current BCI research resembles small-vocabulary speech recognition,
since a minimal number of actions is being discriminated. Future research
effort could therefore focus on working towards more open-vocabulary
models. In practice, this means the integration of multiple SI models,
such as for example the P300 response, the error potential, covert atten-
tion etcetera into a single BCI system. The combination of detectors for the
different brain signatures might lead to novel BCI paradigms, and to disam-
biguation of variability naturally present in the brain signals.

5.3.2 Better feature spaces

The method for SI BCI classification is still largely based on features in-
herited from SD classification. The increase of training data and the in-
creased diversity of the samples accompanying the transition from SD to SI
classification creates the opportunity of (re)discovering appropriate feature
spaces.

An obvious and already often practised improvement for the features
used in Chapters 3 and 4 is the use of features based on multiple frequency
bands instead of features based on a single broad frequency band [41, 20].

A different path is the unification of known BCI feature spaces. The
features used to extract different BCI signatures (e.g. steady-state visually
evoked potential (SSVEP), motor imagery related ERD, P300) are usually
designed specifically for the task, despite that these methods are all based
on either phase-locked amplitude (ERP) or oscillator power (ERD/event-
related synchronization (ERS)). A combined feature space that can capture
both the first order ERP features and the second order ERD/ERS features
can result in an improvement in performance [12], and could provides a
single unified feature space that can be applied to all known BCI tasks. The
unification of the two main feature spaces would help to reduce the balka-
nization of the BCI methods (i.e. each group introduces a new variant of a
BCI classification pipeline).

One way to implement unification would be through the definition of
specific kernels for use in kernel machines. An example of such a kernel is a
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complex non-homogeneous polynomial kernel used on specific frequency
bins of discrete Fourier transform (DFT) transformed trials. Working in the
DFT domain opens another interesting possibility of shift-invariant ERP
classification, in other words, a P300 could be detected at variable positions
in the analysis window due to the circular wrapping of the DFT. Applica-
tions include uncued ERP classification and the detection of non phase-
locked ERPs.

A strong neurological motivation for the inclusion of phase features in
oscillatory analyses is provided with the recent discovery of cross-frequency
coupling (CFC): sometimes the activity for a given frequency band can-
not be detected on its own, but only emerges after phase-locking the
high-frequency power to the phase of a low-frequency task-relevant activ-
ity [13, 47]. CFC takes these non-linear interactions between signals in dif-
ferent frequency bands into account. The discovery of these interactions
have caused some excitement in the neuroscience community [11, 14] since
they assess the information being carried in the precise timing of activity
within, and across, physically separated brain areas. Although pestered by
the huge increase in feature dimensionality, CFC based features could even-
tually culminate in an ultimate feature space that supports ERP and ERD
based classification as well as more complex interactions.

Another route to improve the BCIs feature space is through unsuper-
vised, semi-supervised or transfer learning. In general, the amount of la-
beled training data is limited. In contrast, unlabeled data is abundant, and
increasingly so with each recorded session. With these methods this data
might be utilized, although the methods’ applicability to BCI datasets with
their excessive and non-iid noise needs to be validated.

5.3.3 Towards uncued BCI classification

A limitation of most BCI research to date — including our own research —
is that the pace of communication is completely determined by the system.
That is, the system dictates a window in which the user can perform a prede-
termined mental task to control the system. This is often true even when no
stimulation is necessary to perform the mental task (e.g. motor imagery).
For most practical applications the continuous classification of brain sig-
nals is preferred, since the explicit trial based communication is unneces-
sarily restrictive for the user. The transition form cued trials to uncued clas-
sification implies that the user can decide to perform a function at any time.
This has two implications for the design of the BCI: 1) the BCI has to perform
robustly when the user is not engaged with the BCI and performs unrelated
tasks, and 2) the BCI classifier should not depend on a specific alignment of
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the trial with the sliding classification window.
The first challenge of producing few false positives can be addressed by

selecting mental tasks with big contrasts between the active tasks and the
resting state. For identifying these tasks we depend on the field of neuro-
science.

The second issue of alignment reshapes the definition of the learning
problem used to train the BCI classifier. Since it is unknown what part of
the brain signature is being processed, or even if the user is performing a
task at all, the BCI has to discriminate reliably under a much larger variety
of circumstances. Usually uncued classification is achieved by training a
BCI classifier on cued trails, and subsequently modifying the classification
pipeline to produce predictions at regular intervals. This method further
violates the iid assumption, and lacks proper theoretical backing. A bet-
ter approach would be to use an overlapping sliding classification window,
and let the machine learning (ML) methods model the mapping from the
space of the different (partial) observations to labels. But since features ex-
tracted with this sliding window share most of their values with the previ-
ous window they are by definition, strongly related. Therefore, classification
problems based on a sliding window form a natural candidate for classifi-
cation methods that relax the iid assumption, such as the dSVM presented
in Chapter 4.

An additional complexity is added by uncued BCI operation, since a pre-
trial baseline cannot be easily defined. Since the SOB method (Chapter 3)
depends on such a baseline, an alternative baseline method needs to be
devised. One approach would be to use a fixed delay for the baseline; pre-
liminary results are presented in [53].

5.3.4 The iid assumption

One of the elusive aspects of BCIs remains, and that is the problem of non-
stationary feature distributions. While variations in the performance are
frequently stated in the literature, hard evidence of these fluctuations is dif-
ficult to gather. We believe this is due to a bias induced in the past years
by favouring robustly performing feature spaces and classifiers with a low
capacity for overfitting (e.g. linear classifiers).

By definition, the common assumption that data is iid is violated when
the feature distributions are produced by a non-stationary process. Since
the iid assumption abounds both in the ML and the common evaluation
methods, weakening the iid assumption requires the reevaluation of known
best practises. The problem caused by incorrectly assuming iid is a form
of overfitting. Combined with the small training sets resulting from per ses-
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sion re-training, this might explain why previous attempts to use non-linear
classifiers, or more complex feature spaces have been unsuccessful to date.

In Chapter 4 we showed that modeling the dependence of classification
errors is beneficial for the BCI performance. Still, the relation between the
changes in the feature distributions and the iid assumption needs to be bet-
ter understood. Based on this understanding better classifiers and evalua-
tion guidelines that take the relatedness of measures into account need to
be developed. The violated iid assumption is one of the most intriguing as-
pects of working with BCI data, and our struggle with non-iid data might
lead to new insights and novel classification models.
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Notation

c Scalar c

A Matrix A

AT A transposed

~x Column vector x

~1 A vector [ 1 1 ··· 1 ]T of matching shape

E [x ] Expected value of x

A ◦ B Hadamard (element-wise) product of matrix A and B

A i ,· The i -th row of A

A ·,j The j -th column of A

vec(A) Column vector based on the stacked columns of A

diag(A) Column vector based on elements on the diagonal of A

≺,�,�,� Element wise vector/matrix inequalities
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Propositions

Boris Reuderink

October 7, 2011

1. The assumption in machine learning and statistics that our observa-
tions are independently and identically distributed is a lie that we need
in order to do our research (Chapter 4).

2. While the BCI community is generally opposed to hyping the technol-
ogy in the media, the field often contributes to unrealistic expectations
by using improper evaluation methodologies.

3. Multiple-test correction is used to control false positives when a series
of statistical tests is performed for a single hypothesis. This is only sen-
sible if one corrects also for all the fruitless tests performed on the same
dataset.

4. Much of the observed “non-stationary” BCI classification performance
within sessions is caused by the researchers interpreting structure in
random noise.

5. It would be beneficial if the obligatory peer review for articles was ex-
tended to review software and scripts developed for the article as well.

6. The Kolmogorov complexity of a PhD thesis in a technical field is in-
versely related to its quality.

7. Many insights from machine learning apply to our daily lives as well; for
example, most researchers have issues with the non-differentiable cost
associated with missing a deadline.

8. Hoewel een computer is een uitstekend medium is om ideeën op uit te
werken, ontstaan deze ideeën meestal niet achter een beeldscherm.

9. Ouderschap vormt gek genoeg geen belemmering voor het werken aan
een proefschrift; blijkbaar is slaaptekort niet cumulatief.
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